Introducing Starling - bytearray.org - revision 1.0

StarlingFramework

The GPU powered 2D Flash API

Introducing Starling

WRATE IS STATIINE? ..ot seeereeeceseeses et es s s s ess s s s R £ ER R R R 2
WY SEATIINE? ...t essetees et et eesse e s s bR R E SRR R R R R 2
g 01 (00] 2O TSSOSO 2

4L L0 2

LIGREWEIGIT ettt s s s RS R £ R R AR AR 2

o 2
5 () 3
B0 0 0 0Tl Y (ot 0) ¢ N 8
LT a0 oY U ot =T o O TP ST 9
Y0 D oY oI 0D Y ol=) o U= T 10
WINOAE TEQUITEIMIEIIEScoueeieseeueesresseessesseessesssessesssesseessesssessssssesssessesssessesssesee s s sse s E s e bR e R bR e R s R R s R Rt 14
SEAZE QUALIEY ceuveereueenceuseesseseesseseessese s esses e s b s e s s s E s R AR R £ AR AR R R E AR 16
ProgreSSiVe ENNANCEIMENTS ... rieeeereeeeeseeeesees et essesees s es s s s esse s s s R R R s st een 16
THE DISPIAY LiSt.eiuuiiuieureereesreeeesseessesseesseseessesssessesssessssssesssessssss s s s RS seER R E AR R s s Rt 16
2= o 0T =) PP 29

DA Z2Y oL o) 0] 0= Yo t= Lo (o) DO 30
Lol T A= 4L PP 30

SIMUIAtING MUITT-EOUCK coreeeee ettt s s s s s e s 32
0= DD 35

00 B TP 37

LD LT 0V 2 TP 44
FIAt SPIIEES woreeeeeeeeeeesseerese et ees s s essee s eb s s s s s b R RS E R R S £ E R AR AR E AR R e 45
IMIOVIECTIP wuveereeureeseenseeseeseessesseessesseessesssessesssessesssesseesseesses e s s se S s £ R LR £ R 4R E R AR SRR AR SRR AR AR AR nE R AR se R R b s 48

TEXEUIE ALIAS ..ot b s RERRSRS RS RRRSeEEEReRaeReRRRR0e 55
JUEBLET ettt ee e e s e s s e REE R E 4R R AR RS E R AR R R AR R AR E AR 61
5 L 0) o N 63
0= 20 1= o PP 70

00T 0 T=T6 (6 (=T I8 () 0 73

12 U0 40 =N 00 0) 01 3TN 76
0 T =) o U= 4 U PP 85
L) 87
E Yo 00 =Tt e 0 1= 91
HAaNAIING SCIEEIN TESIZEScuiuueureeureereesseeseesseesessesssessesssesseessesss s e s s s s sse bR R s s R AR R e bR AR ees 92
Plugging Starling With BOXZD ... s sessssssssses s sessse s sssesssessas s s ssss s sassssees 94
PrOfIlING STATTIIIG . cieuceieereeeeeree ettt et ses e s s s s s s a AR RS EeER AR AR 97

Page 1 of 108

Introducing Starling - bytearray.org - revision 1.0

o U0 (o] (R 101
08 =T b L 108

What is Starling?

Starling is an ActionScript 3 2D framework developed on top of the Stage3D APIs (available on
desktop in Flash Player 11 and Adobe AIR 3). Starling is mainly designed for game development, but
could be used for many other use cases. Starling makes it possible to write fast GPU accelerated
applications without having to touch the low-level Stage3D APIs.

Why Starling?

Most Flash developers want to be able to leverage GPU acceleration (through Stage3D) without the
need to write such higher-level frameworks and dig into the low-level Stage3D APIs. Starling is
completely designed after the Flash Player APIs and abstracts the complexity of Stage3D (Molehill)
and allows easy and intuitive programming for everyone.

Obviously Starling is for ActionScript 3 developers, especially those involved in 2D game
development; of course you will need to have a basic understanding of ActionScript 3. By its design
(lightweight, flexible and simple), Starling can be used also be used for other use cases like Ul
programming. That said, everything is designed to be as intuitive as possible, so any Java™ or .Net™
developer will get the hang of it quickly as well.

Philosophy

Intuitive

Starling is easy to learn. Especially Flash/Flex developers will feel at home immediately, since it
follows most of the ActionScript dogmas and abstracts the complexity of the low-level Stage3D APIs.
Instead of coding against concepts like vertices buffer, perspective matrices, shader programs and
assembly bytecode, you will use familiar concepts like a DOM display list, an event model, and
familiar APIs like MovieClip, Sprite, TextField, etc.

Lightweight
Starling is a lightweight bird in many ways. The amount of classes is limited (around 80k of code).

There are no external dependencies beside Flash Player 11 or AIR 3 (mobile support will come in a
future release). This keeps your applications small and your workflow simple.

Free

Page 2 of 108

Introducing Starling - bytearray.org - revision 1.0

Starling is free and alive. Licensed under the Simplified BSD license, you can use it freely even in
commercial applications. We are working on it every day and we count on an active community to
improve it even more.

How

Starling uses the Stage3D APIs behind the scenes which are low-level GPU APIs running on top of
OpenGL and DirectX on desktop and OpenGL ES2 on mobile devices. As a developer you have to
know that Starling is the ActionScript 3 port of Sparrow (http://www.sparrow-framework.org), the
equivalent library for iOS relying on OpenGL ES2 APIs:

GPU

Figure 1.1
Starling layer on top of Stage3D (Molehill).

Starling recreates many APIs that Flash developers are already familiar with, below is a figure
illustrating the APIs exposed by Starling when it comes to graphical elements:

| starling.events.EventDispatcher |

| starling.display.DisplayObject |

| starling.display.DisplayObjectContainer I | starling.display.Quad |

| | | starling.display.Image I

starling.display.Button | | starling.display.Sprite | | starling.display.Stage | |starling.display.TextField | |
| starling.display.MovieClip |

Figure 1.2
DisplayObject inheritance.

Page 3 of 108

Introducing Starling - bytearray.org - revision 1.0

Many people think that the Stage3D APIs are strictly limited to 3D content. Actually, to be fair, the
name can be confusing; cause there is the term 3D in it, so how can you do 2D with them?

The figure below, illustrates the idea, how can we draw something like a MovieClip with the
drawTriangles API?

o

RL O

D

S @

‘7

&> Q& @

LY

Figure 1.3
drawTriangles and 2D?

Actually, it is very simple, GPU are extremely efficient at drawing triangles, so the drawTriangles
API will be drawing two triangles, we will then be sampling a texture and applying it to the triangles
using UV mapping, we will then end up with our textured quad, which represents our sprite. By
updating the texture every frame on our triangles, we would end up with a MovieClip, pretty cool
hu?

Now, the good news is that we will not even have to go through those details when using Starling,
we will just provide our frames, supply them to a Starling MovieC1lip and voila!

Page 4 of 108

Introducing Starling - bytearray.org - revision 1.0

u=0 u=1

o

.. w—

Q@

V=1'f

>

@O @ @

1
&> Q&> @5

LY 1)

Figure 1.4
drawTriangles + textured quad = 2D.

To give you an idea of how Starling reduces the complexity, let's see what code we would have to
write to display a simple textured quad using the low-level stage3D APIs:

// create the vertices

var vertices:Vector.<Number> = Vector.<Number> ([
-0.5,-0.5,0, 0, O, // %, vy, z, u, v

-0.5, 0.5, 0, 0, 1,

0.5, 0.5, 0, 1, 1,

0.5, -0.5, 0, 1, 0]);

// create the buffer to upload the vertices
var vertexbuffer:VertexBuffer3D = context3D.createVertexBuffer (4, 5);

// upload the vertices
vertexbuffer.uploadFromVector (vertices, 0, 4);

// create the buffer to upload the indices
var indexbuffer:IndexBuffer3D = context3D.createlndexBuffer (6);

// upload the indices
indexbuffer.uploadFromVector (Vector.<uint>([0, 1, 2, 2, 3, 0]), 0O, 6);

// create the bitmap texture
var bitmap:Bitmap = new TextureBitmap();

// create the texture bitmap to upload the bitmap
var texture:Texture = context3D.createTexture (bitmap.bitmapData.width,

bitmap.bitmapData.height, Context3DTextureFormat.BGRA, false);

// upload the bitmap

Page 5 of 108

Introducing Starling - bytearray.org - revision 1.0

texture.uploadFromBitmapData (bitmap.bitmapData) ;

// create the mini assembler
var vertexShaderAssembler : AGALMiniAssembler = new AGALMiniAssembler ();

// assemble the vertex shader
vertexShaderAssembler.assemble (Context3DProgramType.VERTEX,
"m44 op, val0, vc0\n" + // pos to clipspace

"mov v0, val" // copy uv

);

// assemble the fragment shader
fragmentShaderAssembler.assemble (Context3DProgramType.FRAGMENT,
"tex ftl, v0, fsO0 <2d,linear, nomip>;\n" +

"mov oc, ftl"

);

// create the shader program
var program:Program3D = context3D.createProgram() ;

// upload the vertex and fragment shaders
program.upload(vertexShaderAssembler.agalcode, fragmentShaderAssembler.agalcode);

// clear the buffer
context3D.clear (1, 1, 1, 1);

// set the vertex buffer
context3D.setVertexBufferAt (0, vertexbuffer, 0, Context3DVertexBufferFormat.FLOAT 3);
context3D.setVertexBufferAt (1, vertexbuffer, 3, Context3DVertexBufferFormat.FLOAT 2);

// set the texture
context3D.setTextureAt (0, texture);

// set the shaders program
context3D.setProgram(program) ;

// create a 3D matrix
var m:Matrix3D = new Matrix3D();

// apply rotation to the matrix to rotate vertices along the Z axis
m.appendRotation (getTimer () /50, Vector3D.Z AXIS);

// set the program constants (matrix here)
context3D.setProgramConstantsFromMatrix (Co
ntext3DProgramType.VERTEX, 0, m, true);

// draw the triangles
context3D.drawTriangles (indexBuffer);

// present the pixels to the screen
context3D.present () ;

And we would end up with the following result:

Page 6 of 108

Introducing Starling - bytearray.org - revision 1.0

Figure 1.5
A simple textured quad.

Pretty complex code for this right? That is the cost of having access to low-level APIs, you get to
control a lot of things, but at the cost of low-levelness.

With Starling, you will write the following code:

// create a Texture object out of an embedded bitmap
var texture:Texture = Texture.fromBitmap (new embeddedBitmap());

// create an Image object our of the Texture
var image:Image = new Image (texture);

// set the properties
quad.pivotX = 50;
quad.pivotY = 50;

quad.x = 300;

quad.y = 150;
quad.rotation = Math.PI/4;

// display it
addChild (quad) ;

As an ActionScript 3 developer, used to the Flash APIs, you will feel pretty much at home with these
APIs exposed, while all the complexity of the stage3D APIs is done behind the scenes.

If you try to use the redraw regions feature, you will see that Starling as expected, renders
everything on stage3D, not the classic display list. The figure below illustrates the behavior. We
have a quad rotating on each frame; the redraw regions only show the FPS counter sitting in the
display list (running on the CPU):

Page 7 of 108

Introducing Starling - bytearray.org - revision 1.0

gz

FPS: 61/60
MS: 31
MEM: 10.783

Figure 1.6
Content rendered through Stage3D.

Remember that with the Stage 3D architecture, the content is completely rendered and composited
by the GPU, as a result the redraw regions feature used for the display list cannot be used.

Layering restrictions

As a developer, using Starling (and as a result Stage 3D), you need to remember one limitation will
when developing content. As mentioned earlier, Stage3D is literally a new rendering architecture
inside Flash Player. A GPU surface is placed under the display list, meaning that any content running
inside the display list will be placed above the Stage3D content, at not time, content running in the

display list can be placed under the Stage3D layer.

The figure below illustrates the layering:

Page 8 of 108

Introducing Starling - bytearray.org - revision 1.0

Figure 1.7
Layering with Stage3D, StageVideo and the display list.

Note that the stage3D object cannot be transparent, such a capability would allow developers to
play video wusing the StageVideo technology (introduced in Flash Player 10.2 -
http://www.adobe.com/devnet/flashplayer/articles/stage video.html) and overlay the video with
content rendered through Stage3D. Such a feature may be enabled in a future release of the Flash
Player and AIR.

Getting Started

In order to download Starling, check the following links:

¢ Official Starling Github: http://github.com/PrimaryFeather/Starling-Framework/
* Official Starling website: http://www.starling-framework.org

Note that Starling is licensed under the simplified BSD licence, so feel free to use Starling in any kind
of projects. You can contact the people bhind the Starling framework at office@starling-
framework.org.

Page 9 of 108

Introducing Starling - bytearray.org - revision 1.0

Once downloaded, you will reference the Starling library as any other AS3 library. Then, to use the
new Stage3D APIs required by Starling, you will need to target SWF version 13 by passing in an
extra compiler argument to the Flex compiler: -swf-version=13. Directions are below.

If you are using the Adobe Flex SDK:

* Download the new playerglobal.swc for Flash Player 11.

* Download Flex 4.5 SDK (4.5.0.20967) from the Flex 4.5 SDK table.

* Install the build in your development environment

* In Flash Builder, create a new ActionScript project: File -> New -> ActionScript project.

* Open the project Properties panel (right-click and chose 'Properties'). Select

* ActionScript Compiler' from the list on the left.

* Use the 'Configure Flex SDK's' option in the upper right hand corner to point the project to
Flex build 20967. Click ok.

* Configure your project to target SWF version 13

* Open the project Properties panel (right-click and chose 'Properties'). Select

* ActionScript Compiler' from the list on the left.

* Add to the 'Additional compiler arguments' input: -swf-version=13. This ensures the
outputted SWF targets SWF version 13. If you compile on the command-line and not in Flash
Builder, you need to add the same compiler argument.

* Ensure you have installed the new Flash Player 11 build in your browser

To be able to access the Flash Player 11 APIs you will also need the updated playerglobal.swc,
available at the following address: http://labs.adobe.com/downloads/flashplayer11.html

Setting up your scene

Enough of introduction, let’s dig into the code and see what this little bird can do. Starling is very
easy to setup, a starling object needs to be created and added to your main class.

Starting from now, when referring to objects like MovieClip, Sprite, etc, we will imply the
Starling APIs and not the native ones from the Flash Player, unless specificed explicitely.

First, the Starling constructor expects multiple arguments, here is the signature:

public function Starling(rootClass:Class, stage:flash.display.Stage,
viewPort:Rectangle=null, stage3D:Stage3D=null,
renderMode: String="auto")

Actually, the only 2 first are really used commonly. The rootClass argument expects a reference to
aclass extending starling.display.Sprite and as a second argument, our stage:

|package

Page 10 of 108

Introducing Starling - bytearray.org - revision 1.0

import flash.display.Sprite;

import flash.display.StageAlign;
import flash.display.StageScaleMode;
import starling.core.Starling;

[SWF (width="1280", height="752", frameRate="60", backgroundColor="#002143")]
public class Startup extends Sprite
{

private var mStarling:Starling;

public function Startup()

{
// stats class for fps

addChild (new Stats());

stage.align = StageAlign.TOP LEFT;
stage.scaleMode = StageScaleMode.NO SCALE;

// create our Starling instance
mStarling = new Starling(Game, stage);

// set anti-aliasing (higher the better quality but slower performance)
mStarling.antiAliasing = 1;

// start it!
mStarling.start();

Below, our Game class creating a simple quad when added to stage:

package

{
import starling.display.Quad;
import starling.display.Sprite;
import starling.events.Event;

public class Game extends Sprite

{

private var g:Quad;

public function Game ()
{
addEventListener (Event .ADDED TO STAGE, onAdded) ;

}

private function onAdded (e:Event):void

{
g = new Quad (200, 200);
g.setVertexColor (0, 0x000000)
g.setVertexColor (1, 0xAA0000);
g.setVertexColor (2, 0x00FFO00) ;
g.setVertexColor (3, 0x0000FF)
addChild (g);

’

’

Page 11 of 108

Introducing Starling - bytearray.org - revision 1.0

Like we would do as usual, we listen to the Event.ADDED TO STAGE event and initializes our
application in the event handler. That way, we can safely access the stage.

Again, pay attention to this subtle detail. Our Game class here extends the Sprite class from
the starling.display package, not the flash.display.package. A good practice, is to always
check your import statements and make sure you are not using the native API rather than
the Starling APIs. You will get used to it quickly, but this can be confusing at the
beginning.

By testing our previous code, we get the following result. Note that, as expected, objects, just like in
Flash will have a default position of 0,0. Let’s add a few lines to center our quad:

stage.stageWidth - g.width >> 1;
stage.stageHeight - g.height >> 1;

q.x
q.y

And here is our result:

e O O /Users/Imbert/Documents/Adobe Flash Builder 4.5 /StarlingTests/bin-debug/Startup.swf

Figure 1.8
Our first quad !

Note that the antialiasing value allows you to set the anti-aliasing you want, generally a value of 1 is
totally acceptable but you can go further, technically you can go from 0 to 16, but here is the list of
the most common values:

Page 12 of 108

Introducing Starling - bytearray.org - revision 1.0

* 0:No anti-aliasing

2 : Minimal anti-aliasing.

4 : High quality anti-aliasing.

16 : Very high quality anti-aliasing.

We will rarely need to go above 2, especially for 2D content, but you will decide depending on your
use cases. Below are some figures showing the slight difference between the 2 values (1 and 4):

Figure 1.9

Anti-aliasing differences.

You can try values above 2 to adjust to the quality you want. Of course, choosing a high value will
have an impact on the performance.

Let’s have a quick look at the other APIs available on the Starling object:

* enableErrorChecking : Allows you to enable or disable error checking. Specifies whether errors encountered
by the renderer are reported to the application. When enableErrorChecking is true, the clear(),
and drawTriangles() methods called internally by Starling are synchronous and can throw errors.
When enableErrorChecking is false, the default, the clear(), and drawTriangles() methods are asynchronous and
errors are not reported. Enabling error checking reduces rendering performance. You should only enable error
checking when debugging.

e isStarted : Indicates if start was called.

Page 13 of 108

Introducing Starling - bytearray.org - revision 1.0

e juggler: A juggler is a simple object. It does no more than saving a list of objects implementing [Animatable
and advancing their time if he is told to do so (by calling its own advanceTime: method). When an animation is
completed, it throws it away.

e start: Starts the rendering and event handling.

e stop : Stops the rendering and event handling, you would use this method to pause the rendering when the game
goes into the background to save resources.

e dispose : Call this method, when you want to dispose the entire content being rendered and currently on the
GPU memory. This API internally disposes everything (shader programs, textures, etc).

Once your starling object has been created, a debug trace is outputted automatically, giving you
informations about the renderer used. By default, when the SWF is correctly embedded in the page
or when testing in standalone, Starling will output the following:

[Starling] Initialization complete.
[Starling] Display Driver:0penGL Vendor=NVIDIA Corporation Version=2.1 NVIDIA-7.2.9 Renderer=NVIDIA GeForce GI
330M OpenGL Engine GLSL=1.20 (Direct blitting)

Of course, hardware details depend on your configuration. Note that it informs us here that we are
using GPU acceleration by giving details about the drivers version. For debugging purposes, you
may want to force the software fallback used internally by the Flash Player to get an idea of the
performance of your content when running on software.

To do so, just inform that you want to use the software fallback (software rasterizer):

|mStarling = new Starling(Game, stage, null, null, Context3DRenderMode.SOFTWARE) ;

When using software, the message outputted confirms we are running in software mode:

[Starling] Initialization complete.
[Starling] Display Driver:Software (Direct blitting)

You want to test your content in software too, to get an idea of the performance when some users
will be running in this mode. Your content may fallback to software if the configuration of the users
is using old drivers (for consistency reasons, all drivers older than 2009 are blacklisted). Now, let’s
have a look at the requirements for Stage3D when it comes to embedding your SWF in a page.

Wmode requirements

You have to remember that in order to enable Stage 3D and GPU acceleration you have to use
wmode=direct as the embed mode in the page. If you do not specify any value or choose an other
value than “direct”, like “transparent”, “opaque”, or “window”, Stage 3D will not be available, instead
will get a runtime exception informing you that the creation of the context3D object failed, when
requestContext3D on Stage3D is called. Below is a figure illustrating the runtime exception

dialog box:

Page 14 of 108

Introducing Starling - bytearray.org - revision 1.0

e O Adobe Flash Player 11.0.1.123

An ActionScript error occurred:
Error #2044: Unhandled ErrorEvent:. text=Error #3702: Context3D not available.

Dismiss All | | Continue |

Figure 1.10

Runtime exception, when Context3D is not available.

[t is important to handle this situation if your application is embedded using the wrong wmode. You
need to react appropriately by displaying a message explaining the issue. Fortunately, Starling
handles this automatically for you and display the message below:

This application is not correctly embedded (wrong wmode value)

Figure 1.11

Warning message when the application is not correctly embedded.

Page 15 of 108

Introducing Starling - bytearray.org - revision 1.0

Stage quality

As a Flash developer, the concept of stage quality is not new to you. Remember that when working
with Stage3D, and as a result Starling, the stage quality has no impact on the performance.

Progressive enhancements

As mentioned previously, when GPU acceleration cannot be leveraged, Stage3D will fallback to
software and use internally a software fallback engine, called SwiftShader (Transgaming). To make
sure that your content runs well in such a scenario, you need to detect when you are running in
software and remove potential effects that would be slow in software.

In the context of 2D content, software fallback should be able to handle many objects and provide
good performance, but still, to detect this, you can access the Context3D object from the Starling
object by using the static property context:

// are we running hardware of software ?
var isHW:Boolean = Starling.context.driverInfo.toLowerCase () .indexOf ("software") == -1;

It is a good practice to always design your content with software fallback in mind, it will offer a
progressive experience, ensuring the best experience possible on all configurations.

Let’s have a look now at a pretty exciting topic, the display list in Starling!

The Display List

Just like with the native Flash display list, Starling follows the same rule, the stage is not available
until objects are added to the display list. To access the stage safely, we usually rely on some of the
most important events in Flash, which are also available in Starling:

* Event.ADDED : the object was added to a parent.

* Event.ADDED_TO_STAGE : the object was added to a parent that is connected to the stage, thus becoming
visible now.

* Event.REMOVED : the object was removed from a parent.

e Eventt REMOVED FROM_STAGE : the object was removed from a parent that is connected to the stage,
thus becoming invisible now.

We will actively rely on those events in the following examples, just like any Flash content, those
events will allow us to initialize or deactivate objects and optimize performance and resources.

Below is the list of methods defined by the Displayobject class:

Page 16 of 108

Introducing Starling - bytearray.org - revision 1.0

* removeFromParent : Removes the object from its parent, if it has one.

e getTransformationMatrixToSpace : Creates a matrix that represents the transformation from the local
coordinate system to another.

* getBounds : Returns a rectangle that completely encloses the object as it appears in another coordinate system.
e hitTestPoint : Returns the object that is found topmost on a point in local coordinates, or nil if the test fails.
e globalToLocal : Transforms a point from global (stage) coordinates to the local coordinate system.

* localToGlobal : Transforms a point from the local coordinate system to global (stage) coordinates.

Below is a list of the properties defined by the DisplayObiject class, it is very pleasant to see all
those properties exposed and some little improvements like pivotx and pivotY to dynamically
change the registration point of a DisplayObject:

e transformationMatrix : The transformation matrix of the object relative to its parent.

* bounds : The bounds of the object relative to the local coordinates of the parent.

* width : The width of the object in points.

* height : The height of the object in points.

* root : The topmost object in the display tree the object is part of.

* x: The x coordinate of the object relative to the local coordinates of the parent.

e y: They coordinate of the object relative to the local coordinates of the parent.

e pivotX : The x coordinate of the object’s origin in its own coordinate space (default: 0).
e pivotY : The y coordinate of the object’s origin in its own coordinate space (default: 0).
e scaleX : The horizontal scale factor. “1” means no scale, negative values flip the object.
e scaleY : The vertical scale factor. “1” means no scale, negative values flip the object.

* rotation : The rotation of the object in radians. (In Sparrow, all angles are measured in radians.)
e alpha : The opacity of the object.

e visible : The visibility of the object. An invisible object will be untouchable.

e touchable : Indicates if this object (and its children) will receive touch events.

e parent : The display object container that contains this display object.

* stage : The stage the display object is connected to, or null if it is not connected to a stage.

Just like with the native Flash APIs, a sprite is the most lightweight container you can use. Of
course as a subclass of DisplayObject you get all the APIs mentioned earlier plus the ability to
nest content. So far we did not nest content, except for the scene, actually, remember that our Game
class extends Sprite, whichisaDisplayObjectContainer.

Below are the APIs exposed by DisplayObjectContainer objects:

* addChild : Adds a child to the container. It will be at the topmost position.
* addChildAt : Adds a child to the container at a certain index.

Page 17 of 108

Introducing Starling - bytearray.org - revision 1.0

* dispose : Removes all the listeners registered to the object.

* removeFromParent : Removes the child from its parent.

* removeChild : Removes a child from the container. If the object is not a child, nothing happens.
* removeChildAt : Removes a child at a certain index. Children above the child will move down.
e removeChildren : Removes all children from the container.

e getChildAt : Returns a child object at a certain index.

e getChildByName : Returns a child object with a certain name (non-recursively).

e getChildIndex : Returns the index of a child within the container.

e setChildIndex : Changes the index of the specified child.

e swapChildren : Swaps the indexes of two children.

e swapChildrenAt : Swaps the indexes of two children.

* contains : Determines if a certain object is a child of the container (recursively).

Once you have access to the stage you can then call most of the DisplayObjectContainer APIs on
it, but you can also pass a color to the stage. By default Starling will take the default SWF
background color, that you can set using the following SWF tag:

|[SWF(width="1280", height="752", frameRate="60", backgroundColor="#990000")]

You can also override this behavior and just pass a color to the stage object that you can access
from any DisplayObject added to the display list:

package

{
import starling.display.Quad;
import starling.display.Sprite;
import starling.events.Event;

public class Game extends Sprite

{

private var g:Quad;

public function Game ()

{
addEventListener (Event.ADDED TO STAGE, onAdded);

}

private function onAdded (e:Event):void
{
// set the background color to blue
stage.color = 0x002143;

g = new Quad (200, 200);
g.setVertexColor (0, 0x000000) ;
g.setVertexColor (1, 0xAA0000);
g.setVertexColor (2, 0x00FFO00) ;
g.setVertexColor (3, 0x0000FF);
addChild (g);

Page 18 of 108

Introducing Starling - bytearray.org - revision 1.0

Now, understand that we are not using any texture, we basically have two triangles grouped as a
quad, and each vertex of our plane has a different color being interpolated on the GPU.

Of course, if you want a solid plain color, just use the color property of the Quad object:

package

{
import starling.display.Quad;
import starling.display.Sprite;
import starling.events.Event;

public class Game extends Sprite

{

private var g:Quad;

public function Game ()
{
addEventListener (Event.ADDED TO STAGE, onAdded);

}

private function onAdded (e:Event):void

{
g = new Quad (200, 200);
g.color = 0x00FF00;
g.x = stage.stageWidth - g.width >> 1;
g.y = stage.stageHeight - g.height >> 1;
addChild (g);

Then you will end up with this:

Page 19 of 108

Introducing Starling - bytearray.org - revision 1.0

6 0 0 /Users/Imbert/Documents/Adobe Flash Builder 4.5 /StarlingTests/bin-debug/Startup.swf

Figure 1.12
A solid green quad.

We will be now using an Event.ENTER FRAME event, this handler will interpolate the quad color
using a simple easing effect between random colors:

package

{
import starling.display.Quad;
import starling.display.Sprite;
import starling.events.Event;

public class Game extends Sprite

{

private var g:Quad;

private var r:Number = 0;
private var g:Number = 0;
private var b:Number = 0;

private var rDest:Number;
private var gDest:Number;
private var bDest:Number;

public function Game ()
{

addEventListener(Event.ADDEDﬁTOﬁSTAGE, onAdded) ;
}

Page 20 of 108

Introducing Starling - bytearray.org - revision 1.0

private function onAdded (e:Event):void

{

resetColors() ;

g = new Quad (200, 200);

g.x = stage.stageWidth - g.width >> 1;
g.y = stage.stageHeight - g.height >> 1;
addChild (g)7

s.addEventListener (Event.ENTER FRAME, onFrame) ;
}

private function onFrame (e:Event) :void

{

-= (r - rDest) * .01;
(g - ghest) * .01;

= (b - bDest) * .01;

r
g -
b_
var color:uint = r << 16 | g << 8 | b;
g.color = color;

// when reaching the color, pick another one
if (Math.abs(r - rDest) < 1 && Math.abs(g - gDest) < 1 && Math.abs(b - bDest))
resetColors() ;

}

private function resetColors() :void

{

rDest = Math.random() *255;
gDest = Math.random()*255;
bDest = Math.random() *255;

To rotate this quad, we can use the rotation property, note that Starling works in radians whereas
Flash Player works with degrees. This choice was made to preserve consistency between Sparrow
and Starling. Anytime you want to apply a rotation using degrees, just use the
starling.utils.deg2rad function or justinline the conversion:

|sprite.rotation = deg2rad (Math.random () *360) ;

One neat thing is that all DisplayObject have pivotx and pivoty properties allowing us to move
the registration point at runtime for any object:

g.pivotX = g.width >> 1;
g.pivotY = g.height >> 1;

It feels very natural for an ActionScript developer to use Starling, this quad asa DisplayObject can
then be nested with a TextField inside a Sprite, and moving this sprite will allow us to group
elements together, just like what you would do with the native display list:

package

{
import starling.display.DisplayObject;
import starling.display.Quad;
import starling.display.Sprite;

Page 21 of 108

Introducing Starling - bytearray.org - revision 1.0

import starling.events.Event;
import starling.text.TextField;

public class Game extends Sprite
{

private var g:Quad;

private var s:Sprite;

private var r:Number = 0;
private var g:Number = 0;
private var b:Number

I
(=)

private var rDest:Number;
private var gDest:Number;
private var bDest:Number;

public function Game ()

{
addEventListener (Event.ADDED TO STAGE, onAdded) ;
}

private function onAdded (e:Event):void

{

resetColors () ;

g = new Quad (200, 200);

s = new Sprite();

var legend:TextField = new TextField (100, 20, "Hello Starling!", "Arial", 14, OxXFFFFFF) ;

s.addChild(q) ;
s.addChild (legend) ;

s.pivotX = s.width >> 1;
s.pivotY = s.height >> 1;

s.x = (stage.stageWidth - s.width >> 1) + (s.width >> 1);
s.y = (stage.stageHeight - s.height >> 1) + (s.height >> 1);
addChild(s) ;

s.addEventListener (Event .ENTER FRAME, onFrame);
}

private function onFrame (e:Event):void

{

r -—= (r - rDest) * .01;
g -= (g - gDest) * .01;
b -—= (b - bDhest) * .01;

var color:uint = r << 16 | g << 8 | b;
g.color = color;

// when reaching the color, pick another one
if (Math.abs(r - rDest) < 1 && Math.abs(g - gDest) < 1 && Math.abs(b - bDest))
resetColors () ;

(e.currentTarget as DisplayObject) .rotation += .01;
}

private function resetColors () :void

{

Page 22 of 108

Introducing Starling - bytearray.org - revision 1.0

rDest = Math.random()*255;
gDest = Math.random() *255;
bDest = Math.random() *255;

We now rotate our sprite containing our Quad and a TextField all this rotating around the
container registration point:

e OO0 /Users/Imbert/Documents/Adobe Flash Builder 4.5 /StarlingTests/bin-debug/Startup.swf

Figure 1.13
A Sprite containing a Quad and a TextField.

Our code starts to look messy, let's move some code to define a CustomSprite, which will
encapsulate the internal color behavior and children. Here is our final Customsprite class:

package

{
import starling.display.Quad;
import starling.display.Sprite;
import starling.events.Event;
import starling.text.TextField;

public class CustomSprite extends Sprite

{

private var quad:Quad;

Page 23 of 108

Introducing Starling - bytearray.org - revision 1.0

{

}

{

}

{

}

{

Page 24 of 108

private var legend:TextField;

private var quadWidth:uint;
private var quadHeight:uint;

private var r:Number = 0;
private var g:Number
private var b:Number

0;
0;

private var rDest:Number;
private var gDest:Number;
private var bDest:Number;

public function CustomSprite (width:Number, height:Number,

// reset the destination color component
resetColors () ;

// set the width and height
quadWidth = width;
quadHeight = height;

// when added to stage, activate it
addEventListener (Event.ADDED TO STAGE, activate);

private function activate (e:Event) :void

// create a quad of the specified width
quad = new Quad (quadWidth, quadHeight);

// add the legend
legend = new TextField (100, 20, "Hello Starling!",

// add the children
addChild (quad) ;
addChild (legend) ;

// change the registration point
pivotX = width >> 1;
pivotY = height >> 1;

private function resetColors () :void

// pick random color components
rDest = Math.random()*255;
gDest = Math.random() *255;
bDest Math.random () *255;

VAks
* Updates the internal behavior
*

*/
public function update () :void

// easing on the components

r -—= (r - rDest) * .01;
g -= (g - gDest) * .01;
b -—= (b - bDhest) * .01;

"Arial",

14,

color:uint=16777215)

OxFFFFFF) ;

Introducing Starling - bytearray.org - revision 1.0

// assemble the color
var color:uint = r << 16 | g << 8 | b;
quad.color = color;

// when reaching the color, pick another one
if (Math.abs(r - rDest) < 1 && Math.abs(g - gDest) < 1 && Math.abs(b - bDest))
resetColors () ;

// rotate it!
//rotation += .01;

And this is our Game class:

package

{
import starling.display.Sprite;
import starling.events.Event;

public class Game extends Sprite

{

private var customSprite:CustomSprite;

public function Game ()

{
addEventListener (Event.ADDED TO STAGE, onAdded);

}

private function onAdded (e:Event):void
{
// create the custom sprite
customSprite = new CustomSprite (200, 200);

// positions it by default in the center of the stage
// we add half width because of the registration point of the custom sprite (middle)

customSprite.x = (stage.stageWidth - customSprite.width >> 1) + (customSprite.width >> 1);
customSprite.y = (stage.stageHeight - customSprite.height >> 1) + (customSprite.height >> 1);
// show it

addChild (customSprite) ;

// need to comment this one ? ;)
stage.addEventListener (Event .ENTER FRAME, onFrame);
}

private function onFrame (e:Event) :void
{
// we update our custom sprite
customSprite.update () ;

Note that we update our custom sprite using the update APl on CustomsSprite allowing us to have
the main loop in the game class allowing us to control our object from a central place. By using this
approach on our other elements, it becomes trivial then to add a pause mechanism to our entire set
of content.

Page 25 of 108

Introducing Starling - bytearray.org - revision 1.0

Let’s add a little more interaction to our little test, we are going to add some more movement by
having our quad to follow the mouse. In the code below we add a little piece of code to make it
happen:

package
{

import flash.geom.Point;

import starling.display.Sprite;
import starling.events.Event;
import starling.events.Touch;
import starling.events.TouchEvent;

public class Game extends Sprite

{
private var customSprite:CustomSprite;
private var mouseX:Number = 0;
private var mouseY:Number = 0;

public function Game ()
{
addEventListener (Event.ADDED TO STAGE, onAdded);

}

private function onAdded (e:Event):void
{
// create the custom sprite
customSprite = new CustomSprite (200, 200);

// positions it by default in the center of the stage
// we add half width because of the registration point of the custom sprite (middle)

customSprite.x = (stage.stageWidth - customSprite.width >> 1) + (customSprite.width >> 1);
customSprite.y = (stage.stageHeight - customSprite.height >> 1) + (customSprite.height >> 1);
// show it

addChild (customSprite) ;

// we listen to the mouse movement on the stage
stage.addEventListener (TouchEvent.TOUCH, onTouch) ;
// need to comment this one ? ;)
stage.addEventListener (Event .ENTER FRAME, onFrame);

}

private function onFrame (e:Event) :void

{
// easing on the custom sprite position
customSprite.x -= (customSprite.x - mouseX) * .1;
customSprite.y -= (customSprite.y - mouseY) * .1;

// we update our custom sprite
customSprite.update () ;

}

private function onTouch (e:TouchEvent) :void

{
// get the mouse location related to the stage
var touch:Touch = e.getTouch (stage) ;
var pos:Point = touch.getlocation (stage) ;

// store the mouse coordinates
mouseX = pos.X;
mouseY = pos.y;

Page 26 of 108

Introducing Starling - bytearray.org - revision 1.0

Note that here, we do not use any Mouse API, and actually there is no concept of mouse in Starling,
we will come back to this very soon.

By listening to the TouchEvent.TOUCH event, we are actually listening to any mouse/finger
movement, just like a classic MousEvent .MOUSE MOVE. Every frame, we store the current mouse
location by using the helper APIs from the TouchEvent object like getTouch and getLocation.
Once the mouse position is stored, we use a little easing equation inside the onFrame event handler
to move our quad around.

As mentioned previously, Starling not only makes your life easier to program on the GPU, but also
when it comes to disposing objects for resources. Let’s say we want to remove this quad from the
scene when we click on it, we will then write the following:

package
{

import flash.geom.Point;

import starling.display.DisplayObject;
import starling.display.Sprite;

import starling.events.Event;

import starling.events.Touch;

import starling.events.TouchEvent;
import starling.events.TouchPhase;

public class Game extends Sprite

{
private var customSprite:CustomSprite;
private var mouseX:Number = 0;
private var mouseY:Number = 0;

public function Game ()

{
addEventListener (Event.ADDED TO STAGE, onAdded);

}

private function onAdded (e:Event):void
{
// create the custom sprite
customSprite = new CustomSprite (200, 200);

// positions it by default in the center of the stage
// we add half width because of the registration point of the custom sprite (middle)

customSprite.x = (stage.stageWidth - customSprite.width >> 1) + (customSprite.width >> 1);
customSprite.y = (stage.stageHeight - customSprite.height >> 1) + (customSprite.height >> 1);
// show it

addChild (customSprite) ;

// we listen to the mouse movement on the stage
stage.addEventListener (TouchEvent.TOUCH, onTouch) ;
// need to comment this one ? ;)
stage.addEventListener (Event .ENTER FRAME, onFrame);

Page 27 of 108

Introducing Starling - bytearray.org - revision 1.0

// when the sprite is touched
customSprite.addEventListener (TouchEvent.TOUCH, onTouchedSprite) ;

}

private function onFrame (e:Event) :void
{
// easing on the custom sprite position
customSprite.x -= (customSprite.x - mouseX) * .1;
customSprite.y -= (customSprite.y - mouseY) * .1;

// we update our custom sprite
customSprite.update () ;

}

private function onTouch (e:TouchEvent) :void

{
// get the mouse location related to the stage
var touch:Touch = e.getTouch (stage) ;
var pos:Point = touch.getLocation (stage);

// store the mouse coordinates
mouseX = pos.X;
mouseY = pos.y;

}

private function onTouchedSprite (e:TouchEvent) :void

{
// get the touch points (can be multiple because of multitouch)
var touch:Touch = e.getTouch (stage) ;
var clicked:DisplayObject = e.currentTarget as DisplayObject;

// detect the click/release phase
if (touch.phase == TouchPhase.ENDED)
{
// remove the clicked object
removeChild (clicked) ;

Note that here we remove the child but we do not remove the Event.ENTER FRAME listener. We
can test if our sprite still has a listener by using the hasEventListener APIL:

private function onTouchedSprite (e:TouchEvent) :void

{
// get the touch points (can be multiple because of multitouch)
var touch:Touch = e.getTouch (stage) ;
var clicked:DisplayObject = e.currentTarget as DisplayObject;

// detect the click/release phase
if (touch.phase == TouchPhase.ENDED)
{
// remove the clicked object
removeChild (clicked) ;
// outputs : true
trace (clicked.hasEventListener (e.type))

Page 28 of 108

Introducing Starling - bytearray.org - revision 1.0

To safely remove a child, use the second parameter (dispose) of removeChild, which allows you to
also remove automatically all the listeners registered to the object being removed:

private function onTouchedSprite (e:TouchEvent) :void

{
// get the touch points (can be multiple because of multitouch)
var touch:Touch = e.getTouch (stage) ;
var clicked:DisplayObject = e.currentTarget as DisplayObject;

// detect the click/release phase
if (touch.phase == TouchPhase.ENDED)
{
// remove and dispose all the listeners
removeChild(clicked, true);
// outputs : false
trace (clicked.hasEventListener (e.type));

Note that the same dispose argument is available also on the other APIs to remove children like
removeChildren Or removeChildAt.

You can also remove all the listeners by calling the dispose API explicitely on any DisplayObject:

|clicked.dispose()

We have been using for the first time, the Starling event model which looks very similar to the
native Flash Player’s one, let’s spend some more time on the EventDispatcher API available in
Starling.

Event model

As shown in figure 1.2, all Starling objects are subclasses of the EventDispatcher class. Just like
with the native EventDispatcher API, all Starling objects expose APIs to add or remove listeners
to them:

* addEventListener : Registers a listener to a specific event.
* hasEventListener : Tests if there is a listener for a specific event.
* removeEventListener : Removes the event listener.

* removeEventListeners : Removes all the listeners registered to a specific event or all of them.

Note the addition of a very useful APl: removeEventListeners. At any time, when you need to
remove all listeners registered to a specific event, use removeEventListeners by passing the
event type:

|button.removeEventListeners(Event.TRIGGERED);

Page 29 of 108

Introducing Starling - bytearray.org - revision 1.0

When you need to remove all the listeners, no matter the event, in a scenario where you are about
get rid of an object or deactivate it, just call the same removeEventListeners API with no event
type as a parameter:

|button.removeEventListeners (),

Note that we just used recently the removechild API that takes an argument for disposing
listeners, which calls internally the same API internally, but on each child.

Event propagation

As we have seen since the beginning of this Starling tutorial, Starling recreates the concept of
display list on top of stage3D. The great news is that you will be able to also reuse the power of
event propagation with Starling. Event propagation can be really useful in some scenarios to limit
the number of listeners that you have to register and unregister and make your code cleaner.

For those of you not familiar with the concept of event propagation, you can get more details about
it here: http://www.adobe.com/devnet/actionscript/articles/event_handling as3.html

As an interesting detail, Starling handles event propagation, but a slightly different version than the
native one in Flash. Starling only supports the bubbling phase, there is no concept of capture phase.
We will be leveraging event propagation during the next examples to see how it works.

Touch Events

As we mentioned earlier, Starling is Sparrow’s cousin, as a result, the touch event mechanism is
Starling is really tailored for mobile and as a result for touch interactions, which can be quite
confusing at first sight when using Starling on desktop applications designed for mouse interactions.

First, if you take a look at the figure 1.2, you will notice that in contrary of the native display list,
with Starling there is no InteractiveObject class in the hierarchy, all display objects are by
default interactive. To say it differently, the DisplayObject class defines interactive behaviors.

We have been using touch events quickly in the past examples. We started with some very basic
stuff, like reacting when the mouse touches the quad. For this, we used the TouchEvent.TOUCH
event:

// when the sprite is touched
_customSprite.addEventListener (TouchEvent.TOUCH, onTouchedSprite) ;

You may think that this is pretty limited right? Actually it is very powerful cause you can detect a lot

of different states through this single event. Everytime a mouse or fingers are interacting with a
graphical object, a TouchEvent . TOUCH event is dispatched.

Page 30 of 108

Introducing Starling - bytearray.org - revision 1.0

Let’s have a closer look; in the code below, we trace the phase property available on the Touch
object in our onTouch event handler:

private function onTouch (e:TouchEvent) :void

{
// get the mouse location related to the stage
var touch:Touch = e.getTouch (stage) ;
var pos:Point = touch.getLocation (stage);

trace (touch.phase);
// store the mouse coordinates

_mouseY = pos.y;
_mouseX = pos.X;

When we start interacting with the quad and click on it, we can see that different phases are
triggered; here is the list of all the phases available as constants through the TouchPhase API:

* began : A mouse or finger starts interacting (similar to a mouse down state).

* ended : A mouse or finger stop interacting (similar to a native click state).

* hover : A mouse or finger is hovering an object. (similar to a native mouse over state)

* moved : A mouse or finger is moving an object (similar to a native mouse down state + a mouse move state).

e stationary : A mouse or finger stopped interactng with an object and stays over it.
Let’s have a look at some others API available on the TouchEvent event object:

e ctrlKey : A boolean returning the state of the ctrl key (down or not).

e getTouch: Gets the first Touch object that originated over a certain target and are in a certain phase.

e getTouches : Gets a set of Touch objects that originated over a certain target and are in a certain phase.
* shiftKey: A boolean returning the state of the shift key (down or not).

e timestamp : The time the event occurred (in seconds since application launch).

e touches : All touches that are currently happening.

The use of the shiftKey and ctr1Key properties is useful to detect combination with keyboard
keys. So everytime there is an interaction, the finger or the mouse has a Touch object related to it.

Let’s see the APIs available on a Touch object:

* clone : Clones the object.
e getLocation: Converts the current location of a touch to the local coordinate system of a display object.

e getPreviousLocation: Converts the previous location of a touch to the local coordinate system of a display
object.

e globalX: The x-position of the touch in screen coordinates.

Page 31 of 108

Introducing Starling - bytearray.org - revision 1.0

e globalY : The y-position of the touch in screen coordinates.

* id: A unique id for the object.

e phase : The current phase the touch is in.

e previousGlobalX : The previous x-position of the touch in screen coordinates.

e previousGlobalY : The previous y-position of the touch in screen coordinates

e tapCount : The number of taps the finger made in a short amount of time. Use this to detect double-taps, etc.
e target : The display object at which the touch occurred.

e timestamp : The moment the event occurred (in seconds since application start).

Example getLocation stage and getLocal local

Simulating multi-touch

When developing content for mobile devices, there are lof of chances that you may want to leverage
multi-touch interactions, like for scaling for instance. When authoring on desktop, if you cannot test
live on the device, Starling offers a great built-in mechanism to simulate multi-touch.

To enable it, you need to use the simulateMultiTouch property on the starling object:

package

{
import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import starling.core.Starling;

[SWF (width="1280", height="752", frameRate="60", backgroundColor="#002143")]
public class Startup extends Sprite
{

private var mStarling:Starling;

public function Startup()

{
// stats class for fps
addChild (new Stats());

stage.align = StageAlign.TOP LEFT;
stage.scaleMode = StageScaleMode.NO SCALE;

// create our Starling instance

mStarling = new Starling(Game, stage);

// emulate multi-touch

mStarling.simulateMultitouch = true;

// set anti-aliasing (higher the better quality but slower performance)
mStarling.antiAliasing = 1;

// start it!

mStarling.start();

Page 32 of 108

Introducing Starling - bytearray.org - revision 1.0

Once enabled, just use the ctrl key, automatically, two little dots will appear and simulate multi
touch inputs. The figure below illustrates the idea:

Figure 1.14

Multi-touch simulation.

In the code below, we are scaling the quad when using multiple touch points, like two fingers. We
retrieve the touch points and calculate the distance between them:

package

{
import flash.geom.Point;

import starling.display.Sprite;
import starling.events.Event;
import starling.events.Touch;
import starling.events.TouchEvent;
import starling.events.TouchPhase;

public class Game extends Sprite

{

private var customSprite:CustomSprite;

public function Game ()
{

addEventListener(Event.ADDEDﬁTOﬁSTAGE, onAdded) ;
}

private function onAdded (e:Event):void

Page 33 of 108

Introducing Starling - bytearray.org - revision 1.0

// create the custom sprite
customSprite = new CustomSprite (200, 200);

// positions it by default in the center of the stage
// we add half width because of the registration point of the custom sprite (middle)

customSprite.x = (stage.stageWidth - customSprite.width >> 1) + (customSprite.width >> 1);
customSprite.y = (stage.stageHeight - customSprite.height >> 1) + (customSprite.height >> 1);
// show it

addChild (customSprite) ;

// we listen to the mouse movement on the stage
//stage.addEventListener (TouchEvent.TOUCH, onTouch) ;

// need to comment this one ? ;)
stage.addEventListener (Event .ENTER FRAME, onFrame);

// when the sprite is touched

customSprite.addEventListener (TouchEvent.TOUCH, onTouchedSprite) ;

}

private function onFrame (e:Event) :void
{
// we update our custom sprite
customSprite.update () ;

}

private function onTouchedSprite (e:TouchEvent) :void
{

// retrieves the touch points

var touches:Vector.<Touch> = e.touches;

// if two fingers

if (touches.length = 2)

{
var fingerl:Touch = touches|[0];
var finger2:Touch = touches[1];

var distance:int;
var dx:int;
var dy:int;

// if both fingers moving (dragging)
if (fingerl.phase == TouchPhase.MOVED && finger2.phase == TouchPhase.MOVED)
{

// calculate the distance between each axes

dx = Math.abs (fingerl.globalX - finger2.globalX) ;

dy = Math.abs (fingerl.globalY - finger2.globalY);

// calculate the distance
distance = Math.sqrt (dx*dx+dy*dy) ;

trace (distance);

Let’s cover textures now!

Page 34 of 108

Introducing Starling - bytearray.org - revision 1.0

Texture

A texture object must be created to feed an Image object. Think of it, as the relationship between
Bitmap and BitmapData when using the native APIs. At anytime, when you need to create a
Texture object, you need to use the Texture API, which contains the following APIs:

* Dbase : The Stage3D texture object the texture is based on.

e dispose : Disposes the underlying texture data.

* empty : Returns a Texture object out of dimensions (width and height).
e frame : The texture frame (see class description).

* fromBitmap : Returns a Texture object out of a Bitmap object. This Bitmap object can be embedded or loaded
dynamically.

* fromBitmapData : Returns a Texture object out of a BitmapData object.

¢ fromAtfData : Allows the use of a compressed texture using the ATF (Adobe Texture Format). Compressed
textures allows you to save a lot of memory especially on constrained environments like mobile devices.

* fromTexture : Allows the use of a texture and returns a new texture.

* height : The height of the texture in pixels.

* mipmapping : Indicates if the texture contains mip maps.

e premultipliedAlpha : Indicates if the alpha values are premultiplied into the RGB values.

* repeat : Indicates if the texture should repeat like a wallpaper or stretch the outermost pixels.

e width : The width of the texture in pixels.

Different image formats can be used for your textures. The list below summarizes the various
formats that can be used for your textures:

* PNG : As alpha channel is often required, PNG is one of the most common file format used for textures.

e JPEG : The classic JPEG format can also be used. Remember that on the GPU the image will be decompressed,
so using JPEG will not limit the memory usage and you will not be able to use transparency in your textures.

* JPEG-XR : JPEG XR (abbr. for JPEG extended range[4]) is a still-image compression standard and file format
for continuous tone photographic images, based on technology originally developed and patented by Microsoft
under the name HD Photo (formerly Windows Media Photo). It supports both lossy and lossless compression,
and is the preferred image format for Ecma-388 Open XML Paper Specification documents.

e ATF : Adobe Texture Format. This is the best file format for the best compression. ATF files are primarily a
file container to store lossy texture data. It achieves its lossy compression through to the use of two common
techniques: JPEG-XR1 compression and block based compression. JPEG-XR compression provide a
competitive method to save storage space and network bandwidth. Block based compression provides a way to
reduce texture memory usage on the client, at a fixed ratio of 1:8 compared to RGBA textures. ATF supports
three types of block based compression: DXT12, ETC13 and PVRTCA4.

Let’s dig a little more on the concept of textures and discover an essential concept for images on the
GPU, mipmapping. Mipmapping is an important and easy concept to understand. Scaled down
versions of a texture are called mipmaps. When working with textures on the GPU, the latter needs

Page 35 of 108

Introducing Starling - bytearray.org - revision 1.0

to scale images sometimes depending on the size of the content. This can happen if your camera is
moving towards the content, or when the content is moving towards the camera. Both scenarios will
scale your content and as a result your textures.

Note that texture dimensions need to be of a power of two (1, 2,4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048), but do not require to be square. If you do not respect this rule, Starling
will automatically find the nearest power of two for your image dimensions and create a
texture of this size, which can result in a waste of memory. To make sure you optimize the
memory used by textures, it is recommended to use texture atlases commonly known as
sprite sheets. We will come back to this topic later on.

To ensure the best quality, the GPU requires all mipmap levels of the image (mipmaps). Which
means all the versions of the image from its original size (which needs to be a power of two) to 1.
Without Starling you would have to manually generate the miplevels by using a very simple trick
involving BitmapData.draw and a scaled by 2 transformation matrix.

It is a good practice to upload them for 2D content, this is going to make your content
perform faster and look better (reduces aliasing) when elements are being scaled down.

Fortunately, as mentioned earlier, Starling does it for you automatically, and here is the code used
by Starling, which generates the miplevels:

if (generateMipmaps)
{
var currentWidth:int data.width >> 1;
var currentHeight:int = data.height >> 1;
var level:int = 1;
var canvas:BitmapData = new BitmapData (currentWidth, currentHeight, true, 0);
var transform:Matrix = new Matrix (.5, 0, 0, .5);

while (currentWidth >= 1 || currentHeight >= 1)

{
canvas.fillRect (new Rectangle (0, 0, currentWidth, currentHeight), 0);
canvas.draw (data, transform, null, null, null, true);
texture.uploadFromBitmapData (canvas, level++t);
transform.scale (0.5, 0.5);
currentWidth = currentWidth >> 1;
currentHeight = currentHeight >> 1;

}

canvas.dispose () ;

When using the ATF format (Adobe Texture Format) you actually do not need to worry about it, the
ATF file format contains already the miplevels, which are not generated at runtime but ahead of
time. This is valuable cause it saves the time you would spend generating those miplevels. In a
scenario with a lot of textures this can be precious time saved and bring faster initialization of your
content.

Page 36 of 108

Introducing Starling - bytearray.org - revision 1.0

Notice that there is also a frame property on the Texture object, this allows us to define the
position of the texture when assigned to an Image object. Let’s say you would like to have some
borders around your image, you would then use a smaller texture than the image and position the
texture in the center of the image:

texture.frame = new Rectangle(5, 5, 30, 30);
var image:Image = new Image (texture);

Talking about the Tmage object, let’s have a closer look at it.

Image

In Starling, a starling.display.Image object 1is the equivalent of a native
flash.display.Bitmap object:

|var myImage:Image = new Image (texture);

To display an image, you then need to create an Image object and pass a Texture object to it:

package
{
import flash.display.Bitmap;

import starling.display.Image;
import starling.display.Sprite;
import starling.events.Event;
import starling.textures.Texture;
import starling.utils.deg2rad;

public class Game2 extends Sprite

{

private var sausagesVector:Vector.<Image> = new Vector.<Image>(NUM SAUSAGES, true);
private const NUM SAUSAGES:uint = 400;

[Embed (source = "../media/textures/sausage.png")]
private static const Sausage:Class;

public function Game? ()
{

addEventListener (Event.ADDED TO STAGE, onAdded);
}

private function onAdded (e:Event) :void

{
// create a Bitmap object out of the embedded image

var sausageBitmap:Bitmap = new Sausage();

// create a Texture object to feed the Image object
var texture:Texture = Texture.fromBitmap (sausageBitmap) ;

for (var i:int = 0; i < NUM SAUSAGES; i++)

{
// create a Image object with our one texture
var image:Image = new Image (texture);

// set a random alpha, position, rotation

Page 37 of 108

Introducing Starling - bytearray.org - revision 1.0

image.alpha = Math.random() ;

// define a random initial position

image.x = Math.random() *stage.stageWidth
image.y = Math.random() *stage.stageHeight
image.rotation = deg2rad (Math.random() *360) ;

// show it
addChild (image) ;

// store references for later
sausagesVector[i] = image;

Note that we used the static fromBitmap API on the Texture class to generate our Texture object.
The bitmap we use here is embedded but could be loaded dynamically. Another API is available to
generate a Texture object out of a Bi tmapData object, we will come back to this later.

If we test our code, this should gives us the following result:

FPS:60/60
MEM: 10207

Figure 1.15

Our sausages positioned randomly.

Let’s make things move now, for this, lets create a CustomImage class:

Page 38 of 108

Introducing Starling - bytearray.org - revision 1.0

package

{
import starling.display.Image;
import starling.textures.Texture;

public class CustomImage extends Image

{
public var destX:Number = 0;
public var destY:Number = 0;

public function CustomImage (texture:Texture)

{

super (texture) ;

}

Then let’s use this CustomImage class in our code:

package
{
import flash.display.Bitmap;

import starling.display.Sprite;
import starling.events.Event;
import starling.textures.Texture;
import starling.utils.deg2rad;

public class Game2 extends Sprite

{

private var sausagesVector:Vector.<CustomImage> = new Vector.<CustomImage>(NUM SAUSAGES, true);
private const NUM SAUSAGES:uint = 400;

[Embed (source = "../media/textures/sausage.png")]
private static const Sausage:Class;

public function Game? ()
{

addEventListener (Event.ADDED TO STAGE, onAdded) ;
}

private function onAdded (e:Event):void

{
// create a Bitmap object out of the embedded image
var sausageBitmap:Bitmap = new Sausage();

// create a Texture object to feed the Image object
var texture:Texture = Texture.fromBitmap (sausageBitmap, false);

for (var i:int = 0; i < NUM SAUSAGES; i++)

{
// create a Image object with our one texture
var image:CustomImage = new CustomImage (texture) ;
// set a random alpha, position, rotation
image.alpha = Math.random() ;

// define a random destination
image.destX = Math.random() *stage.stageWidth;
image.destY = Math.random() *stage.stageWidth;

Page 39 of 108

Introducing Starling - bytearray.org - revision 1.0

// define a random initial position

image.x = Math.random() *stage.stageWidth
image.y = Math.random() *stage.stageHeight
image.rotation = deg2rad (Math.random() *360) ;

// show it
addChild (image) ;

// store references for later
sausagesVector[i] = image;

}

// main loop

stage.addEventListener (Event.ENTER FRAME, onFrame);
}

private function onFrame (e:Event) :void

{
var lng:uint = sausagesVector.length;
for (var i:int = 0; i < 1ng; i++)
{
// move the sausages around
var sausage:CustomImage = sausagesVector[i];
sausage.x —-= (sausage.x - sausage.destX) * .1;
sausage.y —= (sausage.y - sausage.destY) * .1;
// when reached destination
if (Math.abs (sausage.x - sausage.destX) < 1 && Math.abs (sausage.y - sausage.destY)
)
{
sausage.destX = Math.random() *stage.stageWidth;
sausage.destY = Math.random() *stage.stageWidth;
sausage.rotation = deg2rad(Math.random()*360) ;
}
}
}

As covered previously, Starling handles event propagation also, making our code cleaner to catch
touch events from all those images moving around. For this, we will just listen to the
TouchEvent.TOUCH on the stage:

// we listen to the mouse movement on the stage
stage.addEventListener (TouchEvent.TOUCH, onClick);

If we test the target and currentTarget properties, we see that the object dispatching the event
(currentTarget)is the stage and the object initiating the event is a CustomImage instance:

private function onClick (e:TouchEvent) :void

{
// get the touch points (can be mulitple because of multitouch)
var touches:Vector.<Touch> = e.getTouches (this) ;
var clicked:DisplayObject = e.currentTarget as DisplayObject;

// if one finger only or the mouse
if (touches.length ==)

Page 40 of 108

Introducing Starling - bytearray.org - revision 1.0

// grab the touch point
var touch:Touch = touches[0];

// detect the click/release phase

if (touch.phase == TouchPhase.ENDED)

{
// outputs : [object Stage] [object CustomImage]
trace (e.currentTarget, e.target);

By using this approach, we do not have to register a listener to each image. We just listen to the
event on their container, here the stage and catch the event during the bubbling phase. If we use the
bubble property from the TouchEvent object, we see that the event is bubbling:

// outputs : [object Stage] [object CustomImage] true
trace (e.currentTarget, e.target, e.bubbles);

OK, that’s it for the event propagation mechanism. Let’s have a look at the Tmage object and what
capabilities it offers. As expected, the Image object exposes all the APIs herited from
DisplayObject, plus one specific smoothing property to handle image smoothing. The following
values are allowed, stored as constants in the TextureSmoothing class:

* BILINEAR : Applies a bilinear filter to the texture when scaled. (default)
* NONE : Applies a bilinear filter to the texture when scaled.
* TRILINEAR : Applies a trilinear filter to the texture when scaled.

Which works like this:

//disable filtering when scaled
image.smoothing = TextureSmoothing.NONE;

Below an image being scaled using a bilinear filter (TextureSmoothing.BILINEAR):

Page 41 of 108

Introducing Starling - bytearray.org - revision 1.0

Figure 1.16
TextureSmoothing BILINEAR.

Below an image being scaled using a trilinear filter (TexturesSmoothing.TRILINEAR):

Figure 1.17
TextureSmoothing TRILINEAR.

Page 42 of 108

Introducing Starling - bytearray.org - revision 1.0

Below an image being scaled not using any filter (TextureSmoothing.NONE):

Figure 1.18
TextureSmoothing NONE.

Note how cool this one looks when no filtering applied.

Keep in mind that the Image object exposes a color property allowing you to specify a color value.
For each pixel, the final color will be the result of the multiplication of the color of the texture with
the color you specified. This allows you to tint an image easily, and create variations of an image
without having to use different textures.

The figure below illustrates the idea:

Figure 1.19

Page 43 of 108

Introducing Starling - bytearray.org - revision 1.0

Texture tinted by the quad color (figure courtesy of sparrow-framework.org).

What if you wanted to use dynamic custom shapes with Starling ? No problem, check the following
section.

Drawing API

Starling does not expose a drawing API like you have today natively in the native
flash.display.Graphics object. However, it is easy to replicate such a feature by using the
drawing API then draw this inside a Bi tmapData object and use it as a texture.

Let’s say you want to use a star shape and display it using Starling.

You would write the following code:

// create a vector shape (Graphics)
var shape:flash.display.Sprite = new flash.display.Sprite();

// pick a color
var color:uint = Math.random() * OXFFFFFEF;

// set color fill
s.graphics.beginFill (color,ballAlpha) ;

// radius
var radius:uint = 20;

// draw circle with a specified radius
s.graphics.drawCircle (radius, radius, radius) ;
s.graphics.endFill () ;

// create a BitmapData buffer
var bmd:BitmapData = new BitmapData (radius * 2, radius * 2, true, color);

// draw the shape on the bitmap
buffer.draw(s);

// create a Texture out of the BitmapData
var texture:Texture = Texture.fromBitmapData (buffer);

// create an Image out of the texture
var image:Image = new Image (texture);

// show it!
addChild (image) ;

The idea is simple, you use the traditional native Graphics API to draw your lines, strokes, and fills,
using the CPU, then you rasterize that on a bitmap and upload this as a texture.

The figure below illustrates an example, where circles are being used with Starling:

Page 44 of 108

Introducing Starling - bytearray.org - revision 1.0

Figure 1.20

Custom dynamic shapes.

Did you know about flate sprites in Starling? So let’s check the following section and see how we can
improve performance by using this very powerful feature.

Flat Sprites

Starling contains a very powerful feature called flat sprites (compiled sprites in Sparrow) which
allows you to bring great performance improvements.

To better understand how the display list works by default, let’s have a look at the figure below
which illustrates a typical display tree in an application with many different objects nested together:

Page 45 of 108

Introducing Starling - bytearray.org - revision 1.0

| starling.display.Sprite | [vertices] and [indices] buffer

| starling.display.Sprite | [vertices] and [indices] buffer

| starling.display.Sprite | |

starling.display.Sprite |

| [vertices] and [indices] buffer [vertices] and [indices] buffer
starling.display.Button | | starling.display.Sprite | | starling.display.Stage | | starling.display. TextField |
[vertices] and [indices] buffer [vertices] and [indices] buffer [vertices] and [indices] buffer [vertices] and [indices] buffer
Figure 1.21

Children having their own vertex and index buffer.

As you can see on the figure above, Starling has to handle each child with its own vertex and index

buffer and all the children behaviors independently, which can require a lot of computation and in
some cases alter your performance.

What Starling can do, is gather all the children’s geometry to a single big vertex buffer and draw the
entire content (the container and its children) in one draw call, like a simple texture:

| starling.display.Sprite | [vertices] and [indices] buffer

| starling.display.Sprite |

I starling.display.Sprite |

starling.display.Button || starling.display.Sprite | | starling.display.Stage | Istarling.display.TextFieId |

starling.display.Sprite

Figure 1.22

When flattened, children drawn in one draw call (one index/vertex buffer).

You can think about it as a similar approach as the cacheAsBitmap (bitmap caching) feature
natively supported in the native dispay list. The exception (which is key here) is that the surface

being drawn does not get renerated automatically when changing a child in the tree. You will have
to call explicitely the flatten API to see the changes.

Here is a list of the APIs available:

Page 46 of 108

Introducing Starling - bytearray.org - revision 1.0

e flatten: Call flatten when you want to render content as fast as possible. Once called, Starling gathers all the
geometry required to draw the display tree and groups all the data in a single buffer and the content is drawn in
one draw call, as if you were drawing a simple texture. Of course this power comes with a limitation, once
called, all changes done to the children will not be reflected until you call flatten again to reflect the changes.

e unflatten: Disables the flatten behavior.

e isFlatenned: Indicates if the sprite is currently flattened or not.

Let’s try this out, in the code below, we add multiple images inside a Sprite and rotate the
container on each frame:

package
{
import flash.display.Bitmap;

import starling.display.Image;
import starling.display.Sprite;
import starling.events.Event;
import starling.textures.Texture;
import starling.utils.deg2rad;

public class Game6 extends Sprite

{

private var container:Sprite;
private static const NUM PIGS:uint = 400;

[Embed (source = "../media/textures/pig-parachute.png")]
private static const PigParachute:Class;

public function Game6 ()
{

addEventListener (Event.ADDED TO STAGE, onAdded);
}

private function onAdded (e:Event) :void
{

// create the container

container = new Sprite();

// change the registration point
container.pivotX = stage.stageWidth >> 1;
container.pivotY = stage.stageHeight >> 1;

container.x = stage.stageWidth >> 1;
container.y stage.stageHeight >> 1;

// create a Bitmap object out of the embedded image
var pigTexture:Bitmap = new PigParachute();

// create a Texture object to feed the Image object
var texture:Texture = Texture.fromBitmap (pigTexture) ;

// layout the pigs
for (var i:uint = 0; i< NUM PIGS; i++)
{
// create a new pig
var pig:Image = new Image (texture);
// random position
pig.x = Math.random() *stage.stageWidth;

Page 47 of 108

Introducing Starling - bytearray.org - revision 1.0

pig.y = Math.random() *stage.stageHeight;
pig.rotation = deg2rad (Math.random() *360) ;
// nest the pig
container.addChild (pig)

}

container.pivotX = stage.stageWidth >> 1;
container.pivotY = stage.stageHeight >> 1;

// show the pigs
addChild (container);

// on each frame
stage.addEventListener (Event .ENTER FRAME, onFrame);

}

private function onFrame (e:Event) :void
{
// rotate the container
container.rotation += .1;

In this test, the animation is perfectly smooth and runs at 60 frames per second, but we can optimize
this, to make sure we reduce the number of draw calls to the minimum. So let’s call the f1atten
API:

// freeze the children
container.flatten();

Now, all the children are drawn through a single draw call. You may not see the performance
difference on desktop, but this will make a difference on mobile. Of course, the other value of this
feature is that it is dynamic, you can rearrange things after calling unflatten and then flatten
again, yes, you can compile textures from dynamic sprites in a way. At anytime, a child can be
modified; the changes will be reflected on screen, when calling explicitly £1atten again.

MovieClip
We just saw how to use the sprite API in Starling, but what about animations like with
MovieClip? Every Flash developer is familiar with the concept of movieclip, for the past few years,

most AS3 developers have recreated the MovieClip APl based on BitmapData.

The image below illustrates a sprite atlas showing each frame of our MovieClip:

Page 48 of 108

Introducing Starling - bytearray.org - revision 1.0

o piatataty
PO TR R

Figure 1.23

A sprite atlas for our running boy.

The idea is that each frame will be sampled by the GPU and displayed in our scene; by updating the
texture on each frame we will reproduce the concept of movieclip. So how do we create this
animation? Well, Flash Pro is your best friend for that, each frame of your animation is exported to a
sequence of images. Then those images are loaded into a tool like TexturePacker
(http://www.texturepacker.com), which exports them merged into a single texture used to feed our
MovieClip object.

The image below illustrates the frames of a sprite atlas:

Page 49 of 108

Introducing Starling - bytearray.org - revision 1.0

9 10 | 11 | 12

13| 14 | 15 | 16

Figure 1.24

Frames in a sprite atlas.

If you are mipmapping your atlases, you need to make sure you that there is a Zpixels space
between each frame so that when mipmapped, there is no bleeding. Meaning that when the GPU will
sample a frame, it does not sample some pixels from other frames too.

Now, remember, there are some restrictions on the size of the textures, you need to remember that
Stage3D (Molehill) has been designed with mobile in mind. As a result, Stage3D enforces OpenGL
ES2 restrictions, like power of two textures. As a result, TexturePacker helps you to respect this and
also integrates a nice feature called AutoSize, determining for you the best width and height for the
texture, while respecting of course the maximum width and height. (Starling limits to 2048*2048):

Page 50 of 108

Introducing Starling - bytearray.org - revision 1.0

® 006

[e e Bl T P e ¥ R

New Open Save Add Sprites Add Folder Delete Publish PVR Viewer

Texture Settings @ Q
¥ Geometry
Autosize [21
Max. width | 2048 2
Max. height | 2048 3
Allow free sizes | |
Scale 1.0000 lv)
Scale mode | Smooth &
Figure 1.25

Autosize feature in TexturePacker.

As mentioned before, Starling will also automatically make sure you are using power of two sizes. If
you do not, Starling will take care of it for you and automatically find the next power of two size
available for your image and crop it.

To let Starling know at which position the frames are located, you need to provide an XML file to the
TextureAtlas API, which will generate out of that our vector of textures. Here again,
TexturePacker generates this file for us automatically, when generating the spritesheet. You can
choose which format to use: XML, JSON, etc.

Starling supports natively XML, here is below what this XML file looks like:

<?xml version="1.0" encoding="UTF-8"?>

<TextureAtlas imagePath="running-sheet.png">
<!-- Created with TexturePacker —-->
<!-- http://texturepacker.com -->
<!-- STexturePacker:SmartUpdate:2b3f5fa2588769393bceadb632749826S5 -->
<SubTexture name="running0001" x="0" y="0" width="304" height="284"/>
<SubTexture name="running0002" x="304" y="0" width="304" height="284"/>
<SubTexture name="running0003" x="608" y="0" width="304" height="284"/>
<SubTexture name="running0004" x="0" y="284" width="304" height="284"/>
<SubTexture name="running0005" x="304" y="284" width="304" height="284"/>
<SubTexture name="running0006" x="608" y="284" width="304" height="284"/>
<SubTexture name="running0007" x="0" y="568" width="304" height="284"/>
<SubTexture name="running0008" x="304" y="568" width="304" height="284"/>
<SubTexture name="running0009" x="608" y="568" width="304" height="284"/>
<SubTexture name="running0010" x="0" y="852" width="304" height="284"/>
<SubTexture name="running0011" x="304" y="852" width="304" height="284"/>
<SubTexture name="running0012" x="608" y="852" width="304" height="284"/>
<SubTexture name="running0013" x="0" y="1136" width="304" height="284"/>
<SubTexture name="running0014" x="304" y="1136" width="304" height="284"/>
<SubTexture name="running0015" x="608" y="1136" width="304" height="284"/>

</TextureAtlas>

Page 51 of 108

Introducing Starling - bytearray.org - revision 1.0

The beauty of this is that you get total control over the frames and therefore the framerate, allowing
you to have multiple movieclips using independent framerate. Well, the good news is that Starling
applies the same technique, but on the GPU, here is how the MovieC1ip constructor looks like:

|public function MovieClip (textures:Vector.<Texture>, fps:Number=12)

In the code below, we create our texture containing our movieclip frames:

[Embed (source = "../media/textures/running-sheet.png")]
private const SpriteSheet:Class;

var bitmap:Bitmap = new SpriteSheet();

var texture:Texture = Texture.fromBitmap (bitmap) ;

Then we retrieve our XML description, describing the position of each frame in the spritesheet:

[Embed (source="../media/textures/running-sheet.xml", mimeType="application/octet-stream")]
public const SpriteSheetXML:Class;

var xml:XML = XML (new spriteSheetXML()) ;

var sTextureAtlas:TextureAtlas = new TextureAtlas (texture, xml);

Then we can retrieve the frames related to our running boy:

|var frames:Vector.<Texture> = sTextureAtlas.getTextures ("running ");

Note that we passed here the argument “running ” meaning that we only want the frames related to
this from our spritesheet, we could have requested another sequence like “jump”, “fire” or any
other, if they we defined.

Let’s have a look at our complete code:

package
{
import flash.display.Bitmap;

import starling.core.Starling;

import starling.display.MovieClip;
import starling.display.Sprite;

import starling.events.Event;

import starling.textures.Texture;
import starling.textures.TextureAtlas;

public class Game3 extends Sprite

{

private var mMovie:MovieClip;

[Embed (source="../media/textures/running-sheet.xml", mimeType="application/octet-stream")]
public static const SpriteSheetXML:Class;

[Embed (source = "../media/textures/running-sheet.png")]
private static const SpriteSheet:Class;

Page 52 of 108

Introducing Starling - bytearray.org - revision 1.0

{

}

{

public function Game3 ()

addEventListener (Event .ADDED TO STAGE, onAdded) ;

private function onAdded (e:Event) :void

// creates the embedded bitmap (spritesheet file)
var bitmap:Bitmap = new SpriteSheet();

// creates a texture out of it
var texture:Texture = Texture.fromBitmap (bitmap) ;

// creates the XML file detailing the frames in the spritesheet
var xml:XML = XML (new SpriteSheetXML()) ;

// creates a texture atlas (binds the spritesheet and XML description)
var sTextureAtlas:TextureAtlas = new TextureAtlas (texture, xml);

// retrieve the frames the running boy frames
var frames:Vector.<Texture> = sTextureAtlas.getTextures ("running ");

// creates a MovieClip playing at 40fps
mMovie = new MovieClip (frames, 40);

// centers the MovieClip
mMovie.x = stage.stageWidth - mMovie.width >> 1;
mMovie.y = stage.stageHeight - mMovie.height >> 1;

// show it
addChild (mMovie);

When testing, we get the following result:

Page 53 of 108

Introducing Starling - bytearray.org - revision 1.0

e O O /Users/Imbert/Documents/Adobe Flash Builder 4.5 /StarlingTests/bin-debug/Startup.swf

Figure 1.26

Our running boy rendered.

Later on we will cover a simple caching technique to reuse assets, so that you limit the number of
objects to instanciate during your application’s lifetime.

To flip our movieclip, as with the native Flash APIs, just use the scalex property, and then add the
width to reposition it at the exact same place:

mMovie = new MovieClip (frames, 40);
mMovie.scaleX = -1;

mMovie.x = (stage.stageWidth - mMovie.width >> 1) + mMovie.width;
mMovie.y = stage.stageHeight - mMovie.height >> 1;

Which gives us the following result:

Page 54 of 108

Introducing Starling - bytearray.org - revision 1.0

e O O /Users/Imbert/Documents/Adobe Flash Builder 4.5/StarlingTests/bin-debug/Startup.swf

Figure 1.27
Our MovieClip flipped.

As stated earlier, it is very common and actually a good practice to put all of your assets on a single
texture file. Why?

First, it is convenient, all the assets of your game are stored in one texture file. Using a single texture
minimizes the number of upload you will ask to the GPU. Remember, uploading is costly on the GPU
especially on mobile. So the less you upload, the better it is. Finally, switching from one texture to
another is also costly, so the better it is if you have a single texture to sample your assets from
rather than switching constantly, from one texture to another.

Texture Atlas

We just discovered the concept of sprite atlas, now, I would like to introduce you to the concept of
texture atlases. In a texture atlas, all our assets are contained in one single texture.

In the following figure, we add another sequence of frames in the same bitmap:

Page 55 of 108

Introducing Starling - bytearray.org - revision 1.0

Figure 1.28

Texture Atlas containing all our assets.

Our XML descriptor file now contains also now the butcher textures:

<?xml version="1.0" encoding="UTF-8"?>
<TextureAtlas imagePath="running-sheet.png">
<!-- Created with TexturePacker -->

Page 56 of 108

Introducing Starling - bytearray.org - revision 1.0

<!-- http://texturepacker.com -->

<!-— STexturePacker:SmartUpdate:5aa8dfdc90d616e76e06b3079d2c5e808 ——>

<SubTexture name="french-butcher 01" x="930" y="486" width="77" height="122" frameX="-106" frameY="-33"
frameWidth="275" frameHeight="200"/>

<SubTexture name="french-butcher 02" x="845" y="588" width="77" height="118" frameX="-106" frameY="-37"
frameWidth="275" frameHeight="200"/>

We now can reference those frames by using the getTextures APl on the TextureAtlas:

// retrieve the frames the running boy frames
var frames:Vector.<Texture> = sTextureAtlas.getTextures ("running ");

// retrieve the frames the running butcher
var framesButcher:Vector.<Texture> = sTextureAtlas.getTextures ("french-butcher ");

// creates a MovieClip playing at 40fps
mMovie = new MovieClip (frames, 40);

// creates a MovieClip playing at 25
mMovieButcher = new MovieClip (framesButcher, 25);

// positiomns them

mMovie.x = stage.stageWidth - mMovie.width >> 1;
mMovie.y = stage.stageHeight - mMovie.height >> 1;
mMovieButcher.x = mMovie.x + mMovie.width + 10;
mMovieButcher.y = mMovie.y;

// show them
addChild (mMovie);
addChild (mMovieButcher) ;

We then end with our butcher next to our little boy:

Page 57 of 108

Introducing Starling - bytearray.org - revision 1.0

FPS: 60 /60
MS: 16
MEM: 17.912

Figure 1.29

Both MovieClips sampled from the same sprite sheet (texture atlas).

Note that at this state, we have our movieclips created and on the scene, but they do not play. To
play them, we need to use a Juggler object.

A default juggler is available as a juggler property of the starling object, handling your content.
To animate the boy and the butcher, we would add the following lines:

// animate them
Starling.juggler.add (mMovie);
Starling.juggler.add (mMovieButcher);

Once added, our movieclips are now animated! Of course, anytime we want, we can pause or stop
the playback:

// pause or stop the playback
mMovie.pause () ;
mMovie.stop () ;

Note that the difference between the two is subtle. The pause API will pause the playback leaving
the current frame at its position, whereas the stop API, will reposition the playhead at the first
frame.

Page 58 of 108

Introducing Starling - bytearray.org - revision 1.0

Let’s have a look at the entire set of APIs available on the MovieClip object, some of them may look
familiar to you as a Flash developer, some others will be very useful like the ability to set a specific
framerate, replace or add frames at runtime and many others:

e currentFrame : The current frame.

e fps: The default frames per second. Used when you add a frame without specifying a duration.
* isPlaying : Indicates if the movie is currently playing.

* loop : Indicates if the movie is looping.

* numFrames : The number of frames of the clip.

e totalTime : The accumulated duration of all frames.

* addFrame : Adds a frame with a specified duration.

e addFrameAt : Inserts a frame at the index specified.

e addFrame : Adds a frame with the default duration.

e getFrameDuration : Returns the duration (in seconds) of a frame at a certain index.

e getFrameSound : Returns the sound of a frame at a certain index.

e getFrameTexture : Returns the texture of a frame at a certain index.

* pause : Pause playback.

e play : Start playback. Make sure that the clip has been added to a Juggler too.

* removeFrameAt : Removes the frame at the index specified.

e setFrameDuration : Sets the duration of a certain frame in seconds.

e setFrameSound : Sets the sound that will be played back when a certain frame is active.

e setFrameTexture : Sets the texture of a certain frame.

We will not cover through examples all of them, but we can see some pretty useful ones, like for
instance addFrameAt and removeFrameAt, allowing you at runtime to add or remove frames at
runtime. Or even set a different duration for a specific frame, and of course helper APIs like
isPlaying Or loop.

In the code below, we want the frame 5, to have a 2 seconds duration:

// frame 5 will length 2 seconds
mMovie.setFrameDuration (5, 2);

We could also add dynamically a sound to a specific frame:

// frame 5 will length 2 seconds and play a sound when reached
mMovie.setFrameDuration (5, 2);
mMovie.setFrameSound (5, new StepSound() as Sound);

Thanks to those APIs, it is possible to entirely assemble movieclips at runtime, from dynamically
loaded or embedded assets, which can be extremely powerful.

Page 59 of 108

Introducing Starling - bytearray.org - revision 1.0

To finish, let’s plug this little running boy with the keyboard like we would do in a game to control
it:

package

{
import flash.display.Bitmap;
import flash.ui.Keyboard;

import starling.animation.Juggler;
import starling.core.Starling;

import starling.display.MovieClip;
import starling.display.Sprite;

import starling.events.Event;

import starling.events.KeyboardEvent;
import starling.textures.Texture;
import starling.textures.TextureAtlas;

public class Game3 extends Sprite
{
private var mMovie:MovieClip;
private var j:Juggler;

[Embed (source="../media/textures/running-sheet.xml", mimeType="application/octet-stream")]
public static const SpriteSheetXML:Class;

[Embed (source = "../media/textures/running-sheet.png")]
private static const SpriteSheet:Class;

public function Game3 ()

{
addEventListener (Event.ADDED TO STAGE, onAdded) ;

}

private function onAdded (e:Event) :void

{
// creates the embedded bitmap (spritesheet file)
var bitmap:Bitmap = new SpriteSheet();

// creates a texture out of it
var texture:Texture = Texture.fromBitmap (bitmap) ;

// creates the XML file detailing the frames in the spritesheet
var xml:XML = XML (new SpriteSheetXML()) ;

// creates a texture atlas (binds the spritesheet and XML description)
var sTextureAtlas:TextureAtlas = new TextureAtlas (texture, xml);

// retrieve the frames the running boy frames
var frames:Vector.<Texture> = sTextureAtlas.getTextures ("running ");

// creates a MovieClip playing at 40fps
mMovie = new MovieClip (frames, 40);

// centers the MovieClip
mMovie.x = stage.stageWidth - mMovie.width >> 1;
mMovie.y = stage.stageHeight - mMovie.height >> 1;

// show it
addChild (mMovie);

// animate it
Starling.juggler.add (mMovie);

Page 60 of 108

Introducing Starling - bytearray.org - revision 1.0

// on key down
stage.addEventListener (KeyboardEvent .KEY DOWN, onKeyDown) ;
}

private function onKeyDown (e:KeyboardEvent) :void
{
// repositions the boy accordingly
if (mMovie.scaleX == -1)
mMovie.x -= mMovie.width;

// if right key or left key
var state:int;
if (e.keyCode == Keyboard.RIGHT)

state = 1;
else if (e.keyCode == Keyboard.LEFT)
state = -1;

// flip the running boy
mMovie.scaleX = state;

// repositions the boy accordingly
if (mMovie.scaleX == -1)
mMovie.x = mMovie.x + mMovie.width;

If you need to listen to the end of the animation, you can listen to the Event.COMPLETE event:

// listen to the end of the animation
mMovie.addEventListener (Event .MOVIE COMPLETED, onAnimationComplete) ;

We have been using the Juggler object in this example, let's see how this object works internally
and what you can do with it.

Juggler

The Juggler API allows you to animate any objects implementing the IAnimatable interface.
MovieClip objects implement the latter, but you can also define you own type of animated object
for Starling, all you need to do is implement the IAnimatable interface and override the
advanceTime method. This is how the particles extension works, we will come back to this at the
end of this tutorial.

Below we can see how animation is done on a MovieClip, the main logic is located here. On each
frame, the texture is swapped. With the native APIs, a similar mechanism would be changing the
bitmapData used by a Bitmap object on each frame:

// IAnimatable
public function advanceTime (passedTime:Number) :void

{
if (mLoop && mCurrentTime == mTotalTime) mCurrentTime = 0.0;
if (!mPlaying || passedTime == 0.0 || mCurrentTime == mTotalTime) return;

Page 61 of 108

Introducing Starling - bytearray.org - revision 1.0

var i:int = 0;

var durationSum:Number = 0.0;

var previousTime:Number = mCurrentTime;

var restTime:Number = mTotalTime - mCurrentTime;

var carryOverTime:Number = passedTime > restTime ? passedTime - restTime : 0.0;
mCurrentTime = Math.min (mTotalTime, mCurrentTime + passedTime) ;

for each (var duration:Number in mDurations)
{
if (durationSum + duration >= mCurrentTime)
{
if (mCurrentFrame != 1)
{
mCurrentFrame = 1i;
updateCurrentFrame () ;
playCurrentSound() ;
}
break;

}

++1i;
durationSum += duration;

}

if (previousTime < mTotalTime && mCurrentTime == mTotalTime &&
hasEventListener (Event .MOVIE COMPLETED))

{
dispatchEvent (new Event (Event.MOVIE COMPLETED)) ;

}

advanceTime (carryOverTime) ;

Here is a list of APIs available on the Juggler API:

e add : Adds an object to the juggler.

e advanceTime : API intended to be called if needed to manually handle the Juggler main loop.

e delayCall : Delays the execution of a certain method. Returns a proxy object on which to call the method

instead. Execution will be delayed until time has passed.
* elapsedTime : The total life time of the juggler.
e isComplete : The status of the Juggler.
e purge : Removes all objects at once.
* remove : Removes an object from the juggler.

* removeTweens : Removes all objects of type Tween that have a certain target.

In some scenarios, you may require to create another Juggler to handle animation while the main
content of your game for instance is paused. To animate elements like menus overlaying your
paused game, you may want to use a Juggler, all you need to do is create an instance and call its

advanceTime APL

Another interesting feature of the juggler is the ability to delay calls. In the following code, we use

the juggler to delay the moment when the child is going to be removed from the parent:

Page 62 of 108

Introducing Starling - bytearray.org - revision 1.0

|juggler.delayCall(object.removeFromParent, 1.0);

Let’s have a look at an important part of Starling for interactions, the Button APL

Button

Starling natively supports the concepts of buttons. Here is the signature of the Button constructor:

|public function Button (upState:Texture, text:String="", downState:Texture=null)

By default, the Button class creates an internal TextField to support labels and the text is
centered inside the button. In the code below we create a simple button out of an embedded bitmap
that we use as a skin:

package
{

import flash.display.Bitmap;

import starling.display.Button;
import starling.display.Sprite;
import starling.events.Event;
import starling.textures.Texture;

public class Game4 extends Sprite

{

[Embed (source = "../media/textures/button normal.png")]
private static const ButtonTexture:Class;

public function Game4 ()
{
addEventListener (Event.ADDED TO STAGE, onAdded);

}

private function onAdded (e:Event) :void

{
// create a Bitmap object out of the embedded image
var buttonSkin:Bitmap = new ButtonTexture() ;

// create a Texture object to feed the Button object
var texture:Texture = Texture.fromBitmap (buttonSkin);

// create a button using this skin as up state
var myButton:Button = new Button (texture, "Play");

// createa container for the menu (buttons)
var menuContainer:Sprite = new Sprite();

// add the button to our container
menuContainer.addChild (myButton) ;

// centers the menu
menuContainer.x = stage.stageWidth - menuContainer.width >> 1;
menuContainer.y = stage.stageHeight - menuContainer.height >> 1;

Page 63 of 108

Introducing Starling - bytearray.org - revision 1.0

// show the button
addChild (menuContainer) ;

Note that we use here the fromBitmap API, to create the texture that we need to feed the Button

object for its skin:

// create a Texture object to feed the Button object
var texture:Texture = Texture.fromBitmap (buttonSkin);

Let’s create a simple menu out of some data contained in a Vector, a simple loop and we are done:

package
{

import flash.display.Bitmap;

import starling.display.Button;
import starling.display.Sprite;
import starling.events.Event;
import starling.textures.Texture;

public class Game4 extends Sprite

{

[Embed (source = "../media/textures/button normal.png")]
private static const ButtonTexture:Class;

// sections

public function Game4 ()

{
addEventListener (Event.ADDED TO STAGE, onAdded);

}

private function onAdded (e:Event) :void

{
// create a Bitmap object out of the embedded image

var buttonSkin:Bitmap = new ButtonTexture() ;

// create a Texture object to feed the Button object
var texture:Texture = Texture.fromBitmap (buttonSkin);

// createa container for the menu (buttons)
var menuContainer:Sprite = new Sprite();

var numSections:uint = sections.length
for (var i:uint = 0; i< 4; i++)

{

// create a button using this skin as up state

// bold labels
myButton. fontBold = true;

Page 64 of 108

private var sections:Vector.<String> = Vector.<String>(["Play", "Options", "Rules",

var myButton:Button = new Button (texture, sections[i]);

"Sign in"]1);

Introducing Starling - bytearray.org - revision 1.0

// position the buttons
myButton.y = myButton.height * i;

// add the button to our container
menuContainer.addChild (myButton) ;
}

// centers the menu
menuContainer.x = stage.stageWidth - menuContainer.width >> 1;
menuContainer.y = stage.stageHeight - menuContainer.height >> 1;

// show the button
addChild (menuContainer) ;

By testing the code above, we get the following result:

Figure 1.30

A simple menu, made out of buttons.

But wait, we did not use here a sprite sheet with all the button skins. We just embedded one skin
and we had to upload it to the GPU through the fromBitmap API of the Texture object. That is fine
if you intend to use a single skin for all your buttons. A best practice would be to define all our skins
into a single texture atlas, just like what we did for the two movieclips previously (boy and butcher).

Page 65 of 108

Introducing Starling - bytearray.org - revision 1.0

Now let’s have a look at the list of properties available on the But ton class:

* alphaWhenDisabled : The alpha value used when button is disabled.

* downState : The texture used when the button is in its downstate (clicked).

* enabled : Determines if the button can be triggered.

e fontBold : Determines if the label’s font is using bold styling or not.

e fontColor : The color of the font.

e fontName : The font used for the button’s label. Can be a system’s font or a registered bitmap font.
e fontSize : Size of the font used for the button ‘s label.

¢ scaleWhenDown : The scale factor when the button is touched. When a down state texure is used, the button
will not scale.

e text : The text to use for the button’s label.
e textBounds : The position of the button’s label.

e upState : The texture used when the button is not being touched.

In contrary of the native Flash APIs, the Button object is a subclass of DisplayObjectContainer,
meaning that you are not restricted to the state properties to skin your button. You can decorate it
the way you want, just like any other container.

Note that the Button object also dispatches a specific Event.TRIGGERED event to handle click
state:

// listen to the Event.TRIGGERED event
myButton.addEventListener (Event.TRIGGERED, onTriggered) ;

private function onTriggered (e:Event) :void

{
trace ("I got clicked!");

}

The Event.TRIGGERED event does bubble; if you want to leverage event propagation you can rely
on it and catch the event at the container’s level:

package
{

import flash.display.Bitmap;

import starling.display.Button;
import starling.display.Sprite;
import starling.events.Event;
import starling.textures.Texture;

public class Game4 extends Sprite

{

[Embed (source = "../media/textures/button normal.png")]
private static const ButtonTexture:Class;

Page 66 of 108

Introducing Starling - bytearray.org - revision 1.0

// sections
private var sections:Vector.<String> = Vector.<String>(["Play", "Options", "Rules",

public function Game4 ()

{
addEventListener (Event.ADDED TO STAGE, onAdded) ;

}

private function onAdded (e:Event) :void

{
// create a Bitmap object out of the embedded image

var buttonSkin:Bitmap = new ButtonTexture() ;

// create a Texture object to feed the Button object
var texture:Texture = Texture.fromBitmap (buttonSkin);

// createa container for the menu (buttons)
var menuContainer:Sprite = new Sprite();

var numSections:uint = sections.length

for (var i:uint = 0; i< 4; i++)
{
// create a button using this skin as up state
var myButton:Button = new Button (texture, sections[i]);

// bold labels
myButton. fontBold = true;

// position the buttons
myButton.y = myButton.height * 1i;

// add the button to our container
menuContainer.addChild (myButton) ;

}

// catch the Event.TRIGGERED event
menuContainer.addEventListener (Event.TRIGGERED, onTriggered) ;

// centers the menu
menuContainer.x = stage.stageWidth - menuContainer.width >> 1;
menuContainer.y = stage.stageHeight - menuContainer.height >> 1;

// show the button
addChild (menuContainer) ;

}

private function onTriggered(e:Event) :void

{
// outputs : [object Sprite] [object Button]
trace (e.currentTarget, e.target);
// outputs : triggered!
trace ("triggered!");
}

Let’s add a background to our interface, like a simple scrolled texture:

package
{

Page 67 of 108

"Sign in"]1);

Introducing Starling - bytearray.org - revision 1.0

import flash.display.Bitmap;

import starling.display.Button;
import starling.display.Image;
import starling.display.Sprite;
import starling.events.Event;
import starling.textures.Texture;

public class Game4 extends Sprite

{

[Embed (source = "../media/textures/button normal.png")]
private static const ButtonTexture:Class;

[Embed (source = "../media/textures/background.jpg")]
private static const BackgroundImage:Class;

private var backgroundContainer:Sprite;

private var backgroundl:Image;
private var background2:Image;

// sections
private var sections:Vector.<String> = Vector.<String>(["Play", "Options", "Rules", "Sign in"]);

public function Game4 ()
{

addEventListener (Event.ADDED TO STAGE, onAdded) ;
}

private function onAdded (e:Event) :void

{
// create a Bitmap object out of the embedded image
var buttonSkin:Bitmap = new ButtonTexture() ;

// create a Texture object to feed the Button object
var texture:Texture = Texture.fromBitmap (buttonSkin);

// create a Bitmap object out of the embedded image
var background:Bitmap = new BackgroundImage () ;

// create a Texture object to feed the Image object
var textureBackground:Texture = Texture.fromBitmap (background) ;

// container for the background textures
backgroundContainer = new Sprite();

// create the images for the background
backgroundl = new Image (textureBackground) ;
background2 = new Image (textureBackground) ;

// positions the second part
background2.x = backgroundl.width;

// nest them
backgroundContainer.addChild (backgroundl) ;
backgroundContainer.addChild (background?) ;

// show the background
addChild (backgroundContainer) ;

// create container for the menu (buttons)
var menuContainer:Sprite = new Sprite();

Page 68 of 108

Introducing Starling - bytearray.org - revision 1.0

var numSections:uint = sections.length

for (var i:uint = 0; i< 4; i++)

{
// create a button using this skin as up state
var myButton:Button = new Button (texture, sections[i]);
// bold labels
myButton. fontBold = true;
// position the buttons
myButton.y = myButton.height * 1i;
// add the button to our container
menuContainer.addChild (myButton) ;

}

// catch the Event.TRIGGERED event
// catch the Event.TRIGGERED event
menuContainer.addEventListener (Event.TRIGGERED, onTriggered) ;

// on each frame
stage.addEventListener (Event.ENTER FRAME, onFrame) ;

// centers the menu
menuContainer.x = stage.stageWidth - menuContainer.width >> 1;
menuContainer.y = stage.stageHeight - menuContainer.height >> 1;

// show the button
addChild (menuContainer) ;

}

private function onTriggered(e:Event) :void
{
// outputs : [object Sprite] [object Button]
trace (e.currentTarget, e.target);
// outputs : triggered!
trace ("triggered!");

}

private function onFrame (e:Event) :void

{
// scroll it
backgroundContainer.x -= 10;
// reset
if (backgroundContainer.x <= -backgroundl.width)
backgroundContainer.x = 0;
}

We now have our background scrolling, with our menu on top, the figure below illustrates the
result:

Page 69 of 108

Introducing Starling - bytearray.org - revision 1.0

™ Y

'*_!f:‘!

Figure 1.31

Our menu and a scrolled background.

Note that we applied a little motion blur to the image in Photoshop, to emphasize the feeling of
motion when the image is being scrolled.

TextField

We used the starling.text.TextField API briefly earlier when playing with quads. Let's spend
some little time on how text works with Starling. You may wonder how a GPU renders a font, but
there is a trick here. Behind the scenes Starling creates a native TextField object on the CPU, and
uses it as a offscreen buffer to render the font. Once rasterized, the texture is uploaded to the GPU
and you have your text on screen.

Note that the TextField API does not create a native flash.text.TextField instance for each
starling.text.TextField you use. One instance is cached and reused to render all the text.

In the following code, we create a TextField object and display some text using the Verdana
system font:

package
{

Page 70 of 108

Introducing Starling - bytearray.org - revision 1.0

import starling.display.Sprite;
import starling.events.Event;
import starling.text.TextField;

public class Gameb extends Sprite
{
public function Gameb ()
{
addEventListener(Event.ADDEDﬁTOﬁSTAGE, onAdded) ;
}

private function onAdded (e:Event) :void
{
// create the TextField object
var legend:TextField = new TextField (300, 300, "Here is some text, using an embedded font!",
"Verdana", 38, OXFFFFFF);

// centers the text on stage
legend.x = stage.stageWidth - legend.width >> 1;
legend.y = stage.stageHeight - legend.height >> 1;

// show it
addChild (legend) ;

The following figure illustrates the result:

FPS:50/60
MS: 17
MEM: 11.434

Here is some

text, using a
system font!

Figure 1.32

Some simple text.

Page 71 of 108

Introducing Starling - bytearray.org - revision 1.0

Again, remember that what you see here on screen is not a real text field, but a snapshot of the text
field that got drawn to a bitmap texture and uploaded to the GPU.

Let’s have a closer look at the set of properties exposed by the TextField API:

e alpha: Alpha of the text.

* autoScale : Scales the text automatically to fit the dimensions of the text block.

* bold : Determines if the label’s font is using bold styling or not.

* Dborder : Allows displaying a border around the edges of the text field. Useful for visual debugging.
* bounds : The bounds of the actual characters inside the text field.

e color : The color of the text.

e fontName : The name of the font.

e fontSize : The size of the font.

* hAlign : The horizontal alignment of the text.

e italic : Defines if the text is italic or not.

* Kkerning : Allows using kerning information with a bitmap font (where available). Default is YES.
e text : The displayed text.

e textBounds : The bounds of the actual characters inside the text field.

* underline : Defines if the text is underlined or not.

* vAlign : The vertical alignment of the text.

One of the coolest features of TextField is the autoScale property that we will cover very soon.
But first, let’s play with a few of those properties, in the following code, we add a border around the
text and make it bold and then change its color:

// create the TextField object
var legend:TextField = new TextField (300, 300, "Here is some text, using an embedded font!", "Verdana", 38,
OXFFFFFF) ;

// change the color, set bold and enable a border
legend.color = 0x990000;

legend.bold = true;

legend.border = true;

The figure below illustrates the result:

Page 72 of 108

Introducing Starling - bytearray.org - revision 1.0

Figure 1.33

Some simple colored text.

Note that the TextField object does not handle HTML text natively. However, Starling may
introduce such a feature in a future version. Do not hesitate to raise your voice on the Starling
forums, if you would like to see such a feature added. Remember Starling is open source, you can
also implement such a feature by yourself and provide it as an extension to the community.

We just used in the previous example a very common system font, which are pretty useful but you
will need to use embedded fonts in most projects today. In the context of games for instance, you
want to be able to deliver a strongly branded experience, so you will need to use embedded fonts.

Embedded fonts

Starling does not expose an embedFonts property just like the native TextField API does. But
don’t worry, it is actually very easy to use embedded fonts with Starling. First, as expected, you need
to do is embed or load at runtime your font, and then just use it as the font name passed to the
TextField constructor.

In the code below, we embed a font, instanciate it, and use it by passing the fontName property to
the TextField constructor:

package
{

Page 73 of 108

Introducing Starling - bytearray.org - revision 1.0

import flash.text.Font;

import starling.display.Sprite;
import starling.events.Event;
import starling.text.TextField;

public class Gameb extends Sprite

{
[Embed (source='/../media/fonts/Abduction.ttf', embedAsCFF='false',K fontName='Abduction')]

public static var Abduction:Class;

public function Gameb ()
{
addEventListener (Event.ADDED TO STAGE, onAdded);

}

private function onAdded (e:Event) :void
{

// create the font

var font:Font = new Abduction() ;

// create the TextField object
var legend:TextField = new TextField (300, 300, "Here is some text, using an embedded font!",

font. fontName, 38, OxFFFFFF);

// centers the text on stage
legend.x = stage.stageWidth - legend.width >> 1;
legend.y = stage.stageHeight - legend.height >> 1;

// show it
addChild (legend) ;

Automatically, the TextField object finds the embedded font by its name and uses it. The figure
below shows our text using the embedded Abduction font:

Page 74 of 108

Introducing Starling - bytearray.org - revision 1.0

Figure 1.34

Some simple text using an embedded font.

Pretty simple right? In your content, you may want to offer a way to input text, to enter let’s say, a
user name, an email and other informations. As you can imagine, text editing, it is a tricky thing to
do on the GPU. Most platforms, even on mobile use the same trick as the one we will discuss. The
idea is simple, for this scenario, we will just use the classic native display list we have always used.

As the display list sits above the Stage3D scene, we will be able to place our input text field above
the GPU content. To do this, we will rely on a very convenient feature from Starling, native overlay.

Earlier we saw how Starling is able to display an error message when the wmode value used is
incorrect. Starling relies internally on the native overlay feature. As you know, Starling works on
top of Stage3D, the native overlay feature allows you to get access to the display list from the
Starling object and add objects to the native display list that you’ve always used in Flash and overlay
native elements like video, or text input on top of the Stage3D content.

When Starling detects that the wrong wmode value us being used, the internal showFatalError
function is called to display the warning message on top of Stage3D. Obviously, in this scenario, as
there is no GPU surface to render into, Starling relies here on the display list on top of Stage3D:

private function showFatalError (message:String) :void

{
var textField:TextField = new TextField();

Page 75 of 108

Introducing Starling - bytearray.org - revision 1.0

var textFormat:TextFormat = new TextFormat ("Verdana", 12, OxXFFFFFF);
textFormat.align = TextFormatAlign.CENTER;
textField.defaultTextFormat = textFormat;
textField.wordWrap = true;

textField.width = mStage.stageWidth * 0.75;
textField.autoSize = TextFieldAutoSize.CENTER;
textField.text = message;

textField.x = (mStage.stageWidth - textField.width) /
textField.y = (mStage.stageHeight - textField.height)
textField.background = true;
textField.backgroundColor = 0x440000;
nativeOverlay.addChild (textField) ;

’

2
/ 2;

In the code below, we create an input text field and add it on top of our Starling content, on the
display list:

var textInput:flash.text.TextField = new flash.text.TextField();
textInput.type = TextFieldType.INPUT;
Starling.current.nativeOverlay.addChild (textInput) ;

This can be extremely useful when text input is required, to enter various informations when
starting a game for instance.

Bitmap fonts

Because of the texture creation done behind the scene, for the best performance and lowest cost in
terms of resources and GC load, you can use the TextField API with bitmap fonts. The idea is the
same, all the glyphs from a font are exported to a spritesheet, this texture is then sampled to render
each glyph required.

Here is below, the GlyphDesigner tool (from 71 squared - commercial) preparing glyphs spritesheet
for the Britannic Bold font:

Page 76 of 108

Introducing Starling - bytearray.org - revision 1.0

® Bookman Old Style

@0GGC86I3S2dfi
swnarsme7 OUS DD JITWIMIK
XDABRYHZPTV4
g@clgﬁm@mcm«mg#

= TV

Tandons s B LET

MOoUuNrw+XV

Z2RAEIM=o= =
®]

® Bradley Hand (TC TT

® Braggadecio

Figure 1.35
GlyphDesigner on MacOS.

On Windows a similar tool called Bitmap Font Generator (from Angel Code - free) can be used:

Page 77 of 108

Introducing Starling - bytearray.org - revision 1.0

BM Bitmap font generator

Options Edit
EEeaEEmTEEETEEE e o
[To00100 Latin Extended &
o e O 00010 Lo concece
" 8 * 4 ;

o,) [000250 1PA Extensions
! I_ 0002B0 Spacing Modifier Letters

000300 Combining Diacritical Marks
[000370 Greek and Coptic

[ooo400 Cyrillic

[oo0s30 Armenian

000590 Hebrew

0 [ooosoo0 Arabic

[ooogoo Devanagari

[000980 Bengall

[000400 Gurmukhi

%]

m
- ["oooaso Gujarati
-.- [~ 000BOO Oriya

|

Y

i

Y

g .

O -~ ~

B - o= v

[0ooBS0 Tamil
[ooocoo Telugu
[oo0cso Kannada

i [000000 Malayalam

[oooE00 Thai

o o I'o - TR o
T o 2 IQ [uY I /2 B =
o o O I = T A N
O o O = ...- m o W O w
o O :(:>....~r o H O &
o e Ot e c © C M o™
-9 o EIEE - - < -

= = U = ..

0 U @ [oooEso Lao
—— [oooFoo0 Tibetan
e I I [T oo10a0 Georgian
S A [To01100 Hangul Jamo
u u u u y [T nn1FNn 1 akin Fykended addirianal Vi
selected characters: 159/38917 Latin + Latin Supplement 11:B

Figure 1.36

Bitmap Font Generator on Windows.

Yes, trust me, you want to use the MacOS tool ©

Of course, nothing prevents you from generating this glyphs spritesheet at runtime, using a
TextField containing each glyph, laying out the glypes as on the spritesheet and just use the
BitmapData API and draw it. Depending on your platform (desktop or mobile) your choices may
vary. Doing it at runtime would be valuable for size reasons, whereas embedding would give you
faster startup time for your content. You will decide!

Once exported, the texture will be saved as an image and the description of the image, giving details
about the position of each glyph on the image as a .fnt file (XML or text), which looks like the
following:

<info face="BranchingMouse" size="40" />
<common lineHeight="40" />

<pages> <!-- currently, only one page is supported -->
<page 1d="0" file="texture.png" />

</pages>

<chars>

Page 78 of 108

Introducing Starling - bytearray.org - revision 1.0

<char 1d="32" x="60" y="29" width="1" height="1" xoffset="0" yoffset="27" xadvance="8" />
<char 1d="33" x="155" y="144" width="9" height="21" xoffset="0" yoffset="6" xadvance="9" />

</chars>
<kernings> <!-- Kerning is optional -->
<kerning first="83" second="83" amount="-4"/>
</kernings>

Once our bitmap texture and .fnt description file exported, we can embed them as usual:

[Embed (source = "../media/fonts/britannic-bold.png")]
private static const BitmapChars:Class;

[Embed (source="../media/fonts/britannic-bold.fnt", mimeType="application/octet-stream")]
private static const BritannicXML:Class;

To use those, we will be using the following static TextField APlIs:

* registerBitmapFont: Registers a bitmap font.

e unregisterBitmapFont: Unregisters a bitmap font.

We will then pass our font texture and its file decription to the BitmapFont object and register it
through the registerBitmapFont API:

package
{

import flash.display.Bitmap;

import starling.display.Sprite;
import starling.events.Event;
import starling.text.BitmapFont;
import starling.text.TextField;
import starling.textures.Texture;
import starling.utils.Color;

public class Gameb extends Sprite

{

[Embed (source = "../media/fonts/britannic-bold.png")]
private static const BitmapChars:Class;

[Embed (source=". ./media/fonts/britannic-bold.fnt", mimeType="application/octet-stream")]
private static const BritannicXML:Class;

public function Gameb ()
{
addEventListener (Event.ADDED TO STAGE, onAdded);

}

private function onAdded (e:Event) :void

{
// creates the embedded bitmap (spritesheet file)
var bitmap:Bitmap = new BitmapChars() ;

// creates a texture out of it
var texture:Texture = Texture.fromBitmap (bitmap) ;

Page 79 of 108

Introducing Starling - bytearray.org - revision 1.0

// create the XML file describing the glyphes position on the spritesheet
var xml:XML = XML (new BritannicXML()) ;

// register the bitmap font to make it available to TextField
TextField.registerBitmapFont (new BitmapFont (texture, xml)) ;

// create the TextField object
var bmpFontTF:TextField = new TextField (400, 400, "Here is some text, using an embedded font!",
"BritannicBold", 10);

// the native bitmap font size, no scaling
bmpFontTF. fontSize = BitmapFont.NATIVE SIZE;

// use white to use the texture as it is (no tinting)
bmpFontTF.color = Color.WHITE;

// centers the text on stage
bmpFontTF.x = stage.stageWidth - bmpFontTF.width >> 1;
bmpFontTF.y = stage.stageHeight - bmpFontTF.height >> 1;

// show it
addChild (bmpFontTF) ;

Once registered, we can pass the font name when creating the TextField object.

The figure below illustrates the result:

FPS: 58 /60
MS: 18
MEM: 10.945

Here is some
text, using an

embedded
font!

Page 80 of 108

Introducing Starling - bytearray.org - revision 1.0

Figure 1.37

Some text rendered through a bitmap font.

Now, let’s change the string to make it little longer, and see what happens:

var bmpFontTF:TextField = new TextField (400, 400, "Here is some longer text that is very likely to be cut, usi

an embedded font!", "BritannicBold", 10);

As expected, the bounding box of our text field is too small to display our entire string, as a result we
end up with our text being cut and not properly displayed:

Here is some
longer text
that is very

likely to be
cut, using an
embedded

Figure 1.38
Some large bitmp text being cut off.

Fortunately, Starling exposes an autoScale property on TextField:

// make the text fit into the box
bmpFontTF.autoScale = true;

This property is extremely useful in games when you need to localize your strings and you need to
make sure that text fits into a specific box. Most of the time, for design reasons, you want the text to
be scaled a little bit so that your layout stays exactly the same and aligned whatever the length of
the string.

Page 81 of 108

Introducing Starling - bytearray.org - revision 1.0

Below is a figure showing the autoScale property enabled, with our string slightly changed:

Here is some
longer text that
IS very likely to

be cut, using
an embedded
font!

Figure 1.39
Large text being scaled down to fit the bounding box.

We can enhance our previous example with bitmap fonts for our menu and scrolled background:

package
{

import flash.display.Bitmap;
import flash.geom.Rectangle;

import starling.display.Button;
import starling.display.Image;
import starling.display.Sprite;
import starling.events.Event;
import starling.text.BitmapFont;
import starling.text.TextField;
import starling.textures.Texture;

public class Game4 extends Sprite

{

[Embed (source = "../media/textures/sausage-skin.png")]
private static const ButtonTexture:Class;

[Embed (source = "../media/textures/background.jpg")]
private static const BackgroundImage:Class;

Page 82 of 108

Introducing Starling - bytearray.org - revision 1.0

{

}

{

Page 83 of 108

[Embed (source = "../media/fonts/hobo-std.png")]
private static const BitmapChars:Class;

[Embed (source=". ./media/fonts/hobo-std.fnt", mimeType="application/octet-stream")]
private static const Hobo:Class;

private static const FONT NAME:String = "HoboStd";
private var backgroundContainer:Sprite;

private var backgroundl:Image;
private var background?2:Image;

// sections
private var sections:Vector.<String> = Vector.<String>(["Play", "Options", "Rules",

public function Game4 ()

addEventListener (Event .ADDED TO STAGE, onAdded) ;

private function onAdded (e:Event) :void

// creates the embedded bitmap (spritesheet file)
var bitmap:Bitmap = new BitmapChars() ;

// creates a texture out of it
var texture:Texture = Texture.fromBitmap (bitmap) ;

// create the XML file describing the glyphes position on the spritesheet
var xml:XML = XML (new Hobo()) ;

// register the bitmap font to make it available to TextField
TextField.registerBitmapFont (new BitmapFont (texture, xml));

// create a Bitmap object out of the embedded image
var buttonSkin:Bitmap = new ButtonTexture() ;

// create a Texture object to feed the Button object
var textureSkin:Texture = Texture.fromBitmap (buttonSkin) ;

// create a Bitmap object out of the embedded image
var background:Bitmap = new BackgroundImage () ;

// create a Texture object to feed the Image object
var textureBackground:Texture = Texture.fromBitmap (background) ;

// container for the background textures
backgroundContainer = new Sprite();

// create the images for the background
backgroundl = new Image (textureBackground) ;
background?2 = new Image (textureBackground) ;

// positions the second part
background2.x = backgroundl.width;

// nest them
backgroundContainer.addChild (backgroundl) ;
backgroundContainer.addChild (background?) ;

// show the background

"Sign in"]);

Introducing Starling - bytearray.org - revision 1.0

addChild (backgroundContainer) ;

// create container for the menu (buttons)
var menuContainer:Sprite = new Sprite();

var numSections:uint = sections.length

for (var i:uint = 0; i< numSections; i++)
{
// create a button using this skin as up state
var myButton:Button = new Button (textureSkin, sections[i]);

// font name
myButton. fontName = FONT NAME;
myButton. fontColor = OxXFFFFFF;

// positions the text
myButton. textBounds = new Rectangle (10, 38, 160, 30);

// font size
myButton. fontSize = 26;

// position the buttons
myButton.y = (myButton.height-10) * i;

// add the button to our container
menuContainer.addChild (myButton) ;
}

// catch the Event.TRIGGERED event
menuContainer.addEventListener (Event.TRIGGERED, onTriggered) ;

// on each frame
stage.addEventListener (Event .ENTER FRAME, onFrame);

// centers the menu
menuContainer.x = stage.stageWidth - menuContainer.width >> 1;
menuContainer.y = stage.stageHeight - menuContainer.height >> 1;

// show the button
addChild (menuContainer) ;

}

private function onTriggered(e:Event) :void
{
// outputs : [object Sprite] [object Button]
trace (e.currentTarget, e.target);
// outputs : triggered!
trace ("triggered!");

}

private function onFrame (e:Event):void
{
// scroll it
backgroundContainer.x -= 10;
// reset
if (backgroundContainer.x <= -backgroundl.width)
backgroundContainer.x = 0;

Page 84 of 108

Introducing Starling - bytearray.org - revision 1.0

The figure below illustrates the result:

Figure 1.40

Custom font used in our menu.

Let’s discover now another neat Starling feature, called rendered textures.

RenderTexture

The starling.textures.RenderTexture API, allows developers to create non-destructive
drawing. As a Flash developer, think about the BitmapData APIL This feature can be really useful
when creating applications like drawing tools, where you need to draw continuously inside a
texture and preserve previous drawings.

In the code below, we replicate the BitmapData.draw feature, on the GPU through Starling:

package

{
import flash.display.Bitmap;
import flash.geom.Point;

import starling.display.Image;
import starling.display.Sprite;
import starling.events.Event;

Page 85 of 108

Introducing Starling - bytearray.org - revision 1.0

import starling.events.Touch;

import starling.events.TouchEvent;
import starling.events.TouchPhase;
import starling.textures.RenderTexture;
import starling.textures.Texture;

public class Gamel(O extends Sprite

{
private var mRenderTexture:RenderTexture;
private var mBrush:Image;

[Embed (source = "/../media/textures/egg closed.png")]
private static const Egg:Class;

public function GamelO ()

{
addEventListener (Event .ADDED TO STAGE, onAdded) ;

private function onAdded (e:Event):void
{
// create a Bitmap object out of the embedded image
var brush:Bitmap = new Egg();

// create a Texture object to feed the Image object
var texture:Texture = Texture.fromBitmap (brush) ;

// create the texture to draw into the texture
mBrush = new Image (texture);

// set the registration point
mBrush.pivotX = mBrush.width >> 1;
mBrush.pivotY = mBrush.height >> 1;

// scale it
mBrush.scaleX = mBrush.scaleY = 0.5;

// creates the canvas to draw into
mRenderTexture = new RenderTexture (stage.stageWidth, stage.stageHeight);

// we encapsulate it into an Image object
var canvas:Image = new Image (mRenderTexture);

// show it
addChild (canvas) ;

// listen to mouse interactions on the stage
stage.addEventListener (TouchEvent.TOUCH, onTouch) ;

private function onTouch (event:TouchEvent) :void

{
// retrieves the entire set of touch points (in case of multiple fingers on a touch screen)
var touches:Vector.<Touch> = event.getTouches (this);

for each (var touch:Touch in touches)
{
// if only hovering or click states, let's skip
if (touch.phase == TouchPhase.HOVER || touch.phase == TouchPhase.ENDED)
continue;

// grab the location of the mouse or each finger
var location:Point = touch.getLocation (this);

Page 86 of 108

Introducing Starling - bytearray.org - revision 1.0

// positions the brush to draw
mBrush.x = location.x;
mBrush.y location.y;

// draw into the canvas
mRenderTexture.draw (mBrush) ;

Figure 141

Non destructive drawing.

We are going to talk now about a very well known topic to Flash developers, tweening!

Tweens

Starling also supports tweening and comes with its own tweening engine, supporting most of the
most common equations, illustrated below:

Page 87 of 108

Introducing Starling - bytearray.org - revision 1.0

Easing equations available in Starling (figure courtesy of sparrow-framework.org).

In the code below, we apply a tween to the x and y properties of our text field with a bounce effect:

// create a
var t:Tween

Here is the list of APIs available on a Tween object:

Page 88 of 108

easeln

easelnBounce

easelnElastic

Tween object

= new Tween (bmpFontTF, 4, Transitions.EASE IN OUT BOUNCE) ;

// move the object position
t.moveTo (bmpFontTF.x+300, bmpFontTF.y) ;

// add it to the Juggler
Starling.juggler.add(t) ;

<

easeOut

=

easeOutBack

easeOutBounce

L

easeOutElastic

easelnOut

easelnOutBack

easelnOutBounce

easelnQutElastic

Figure 1.42

AS

easeOutin

L

easeOutinBack

L

easeOutinBounce

L

easeOutinElastic

Introducing Starling - bytearray.org - revision 1.0

* animate : Animates the property of an object to a target value. You can call this method multiple times on one
tween.

* complete : End the tween when called.
e currentTime : The current timing for the tween.
e delay : The delay before the tween is started.

e fadeTo : Animates the alpha property of an object to a target value. You can call this method multiple times on
one tween.

e isComplete : Informs if the tweening is complete or not.

* moveTo : Animates the x and y properties of an object simultaneously.

* onComplete : Reference to the callback called when tween is complete.

* onCompleteArgs : Parameters to be passed to the the callback when tween is complete.
* onStart : Reference to the callback called when tween starts.

e onStartArgs : Parameters to be passed to the the callback when tween starts.

e onUpdate : Reference to the callback called when tween is in progress.

* onUpdateArgs : Parameters to be passed to the the callback when tweenis in progress.
* roundTolnt:

e scaleTo : Animates the scaleX and scaleY properties of an object simultaneously.

e target : The target object that is animated.

¢ totalTime : The total time the tween will take (in seconds).

e transition : The transition method used for the animation.

As an example, in the code below, we listen to the end of the tween, then we dispose the object being
animated by passing the dispose argument through the onCompleteargs API:

// create a Tween object
var t:Tween = new Tween (bmpFontTF, 4, Transitions.EASE IN OUT BOUNCE) ;

// move the object position
t.moveTo (bmpFontTF.x+300, bmpFontTF.y);
t.animate ("alpha", 0);

// add it to the Juggler
Starling.juggler.add(t);

// on complete, remove the textfield from the stage
t.onComplete = bmpFontTF.removeFromParent;

// pass the dispose argument to the removeFromParent call
t.onCompleteArgs = [true];

In the code below we listen to the progress of the tween by using three callbacks assigned to the
onStart, onUpdate and onComplete events:

package
{

import flash.text.Font;

Page 89 of 108

Introducing Starling - bytearray.org - revision 1.0

import
import
import
import
import
import

public
{

{
}

{

}

{
}

{
}

{

Page 90 of 108

starling.animation.Transitions;
starling.animation.Tween;
starling.core.Starling;
starling.display.Sprite;
starling.events.Event;
starling.text.TextField;

class Game5 extends Sprite

public function Gameb ()

[Embed (source="'/../media/fonts/Abduction.ttf', embedAsCFF='false',
public static var Abduction:Class;

addEventListener (Event.ADDED TO STAGE, onAdded) ;

private function onAdded (e:Event) :void

// create the font

var font:Font = new Abduction () ;

// create the TextField object

var legend:TextField = new TextField (300,
font.fontName, 38, OxXFFFFEF);

// centers the text on stage

300,

"Here is some text, using an embedded

legend.x = stage.stageWidth - legend.width >> 1;
legend.y = stage.stageHeight - legend.height >> 1;

// create a Tween object

var t:Tween = new Tween(legend, 4, Transitions.EASE IN OUT BOUNCE) ;

// move the object position

t.moveTo (legend.x+300, legend.y) ;

// add it to the Juggler
Starling. juggler.add(t) ;

// listen to the start
t.onStart = onStart;

// listen to the progress
t.onUpdate = onProgress;
// listen to the end
t.onComplete = onComplete;

// show it
addChild (legend) ;

private function onStart() :void

trace ("tweening complete") ;

private function onProgress () :void

trace ("tweening in progress") ;

private function onComplete () :void

fontName="'Abduction')]

font!",

Introducing Starling - bytearray.org - revision 1.0

trace ("tweening complete")

Let’s see now how we can handle our assets in a more organized way. So far, we have been using
simple embed tags in our code to embed what is needed. In a large project, you want to be able to
have all your assets in a central location. In the following section, we will see a few simple
techniques to group your assets and reuse them.

Asset management

So far we have been using assets in a very simple way. In order to optimize the way you work with
assets, it is highly recommend using an Assets object working as a central location to get resources
from. This Assets object would be responsible for pooling the assets used and make sure they are
reused instead of being thrown away and instanciated again which could pressure the GC.

In the code below, we degine a getTexture API on the Assets object, allowing us to retrieve an
embedded texture

public static function getTexture (name:String) :Texture
{ if (Assets[name] != undefined)
{ if (sTextures[name] == undefined)
{ var bitmap:Bitmap = new Assets[name] ();
sTextures[name] = Texture.fromBitmap (bitmap) ;

}

return sTextures[name];
} else throw new Error ("Resource not defined.");

Note here, the use of a simple Dictionary, to store the asset, so that the next time we need, we just
grab it from the pool, instead of recretating it.

As usual, the textures are embedded through the Embed tag:

[Embed (source = "../media/textures/background.png")]
private static const Background:Class;

Note that Starling does not force you to use embedded textures; you can also load a texture
dynamically by using a Loader object for instance:

// create the Loader
var loader:lLoader = new Loader():;

// listen to the Event.COMPLETE event
loader.contentLoaderInfo.addEventListener (Event.COMPLETE, onComplete);

Page 91 of 108

Introducing Starling - bytearray.org - revision 1.0

// load the image
loader.load (new URLRequest ("texture.png"));

function onComplete (e:Event):void
{
// create the Bitmap
var bitmap:Bitmap = e.currentTarget.data;

// creates a texture out of it
var texture:Texture = Texture.fromBitmap (bitmap) ;

// create the Image object
var image:Image = new Image (texture);

// show the image
addChild (image) ;

A dynamic texture can also be generated out of a Bi tmapData object, so far we have been using pre-
athored bitmaps with Starling, but what if we wanted to create a texture dynamically and use it as a
texture?

For this, we would be using the static fromBitmapData APl on the Texture class:

// creates a dynamic bitmap
var dynamicBitmap:BitmapData = new BitmapData (512, 512);

// we draw a custom vector shape coming from the library or drawn at runtime too
dynamicBitmap.draw (myCustomShape);

// creates a texture out of it
var texture:Texture = Texture.fromBitmapData (bitmap) ;

// create the Image object
var image:Image = new Image (texture);

// show the image
addChild (image) ;

Your Starling applications are likely to run on mobile devices, desktop browsers and as a result, on a
large set of different screen sizes. Starling allows you to easily handle screen resizes, let's see how
this works in the following section.

Handling screen resizes

As a Flash developer, you generally rely on a very simple event to handle screen resizes, such event
is called Event .RESIZE and allows you to be notified everytime the page dimensions are being
changed. By using the stage.stageWidth and stage.stageHeight properties you can then
layout your content appropriately, no matter what screen size you are targeting.

To handle this, the starling.display.Stage used by Starling also dispatches a similar event,
called ResizeEvent .RESIZE, allowing you to handle dynamic resize elegantly.

Page 92 of 108

Introducing Starling - bytearray.org - revision 1.0

In the code below, we update our first example with our quad centered in the scene:

package
{
import flash.geom.Rectangle;

import starling.core.Starling;
import starling.display.Quad;
import starling.display.Sprite;
import starling.events.Event;
import starling.events.ResizeEvent;

public class Game extends Sprite
{
private var g:Quad;
private var rect:Rectangle = new Rectangle(0,0,0,0);

public function Game ()
{
addEventListener (Event.ADDED TO STAGE, onAdded);

}

private function onAdded (e:Event):void
{
// listen to the event
stage.addEventListener (ResizeEvent.RESIZE, onResize) ;

g = new Quad (200, 200);
g.color = 0x00FF00;
g.x = stage.stageWidth - g.width >> 1;
g.y = stage.stageHeight - g.height >> 1;
addChild (g);

}

private function onResize (event:ResizeEvent) :void
{
// set rect dimmensions
rect.width = event.width, rect.height = event.height;

// resize the viewport
Starling.current.viewPort = rect;

// assign the new stage width and height
stage.stageWidth = event.width;
stage.stageHeight = event.height;

// repositions our quad
g.x = stage.stageWidth - g.width >> 1;
q.y stage.stageHeight - g.height >> 1;

Everytime our SWF is resized, the ResizeEvent.RESIZE is dispatched; note that the new
dimensions are sent through the ResizeEvent object, we manually write them to the stagewidth
and stageHeight properties. We then reposition our content, any other content in our application
based on the stage dimensions would then correctly layout.

Page 93 of 108

Introducing Starling - bytearray.org - revision 1.0

Plugging Starling with Box2D

The fantastic thing about Starling is its display list API, which makes it very easy to plug with
existing frameworks. For instance, let’'s say we would like to use the Box2D framework for adding

some physics to our game?

You can learn more about Box2D here and download the library that we will use in the following

example: http: //box2dflash.sourceforge.net/

In the code below, we make boxes fall on the ground with some simple gravity. Of course, everything

is rendered through the GPU:

package
{

{

public
public
public
public

public
{

}

{

Page 94 of 108

import Box2D.Collision.Shapes.b2CircleShape;
import Box2D.Collision.Shapes.b2PolygonShape;
import Box2D.Common.Math.b2Vec2;

import Box2D.Dynamics.b2Body;

import Box2D.Dynamics.b2BodyDef;

import Box2D.Dynamics.b2FixtureDef;

import Box2D.Dynamics.b2World;

import starling.display.DisplayObject;
import starling.display.Quad;

import starling.display.Sprite;

import starling.events.Event;

public class PhysicsTest extends Sprite
private var mMainMenu:Sprite;

private var bodyDef:b2BodyDef;
private var inc:int;

var m world:b2World;

var m velocityIterations:int = 10;
var m positionIterations:int = 10;
var m_timeStep:Number = 1.0/30.0;

function PhysicsTest ()

addEventListener (Event.ADDED TO STAGE, onAdded);

private function onAdded (e:Event) :void

// Define the gravity vector
var gravity:b2Vec2 = new b2Vec2 (0.0,

// Allow bodies to sleep
var doSleep:Boolean = true;

// Construct a world object
m world = new b2World(gravity, doSleep);

// Vars used to create bodies
var body:b2Body;

var boxShape:b2PolygonShape;
var circleShape:b2CircleShape;

Introducing Starling - bytearray.org - revision 1.0

// Add ground body

bodyDef = new b2BodyDef () ;
//bodyDef.position.Set (15, 19);
bodyDef.position.Set (10, 28);
//bodyDef.angle = 0.1;

boxShape = new b2PolygonShape () ;
boxShape.SetAsBox (30, 3);

var fixtureDef:b2FixtureDef = new b2FixtureDef () ;
fixtureDef.shape = boxShape;
fixtureDef.friction = 0.3;

// static bodies require zero density
fixtureDef.density = 0;

// Add sprite to body userData

var box:Quad = new Quad (2000, 200, 0xCCCCCC);
box.pivotX = box.width / 2.0;

box.pivotY = box.height / 2.0;

bodyDef.userData = box;
bodyDef.userData.width = 34 * 2 * 30;
bodyDef.userData.height = 30 * 2 * 3;
addChild (bodyDef.userData) ;

body = m world.CreateBody (bodyDef) ;
body.CreateFixture (fixtureDef) ;

var quad:Quad;

// Add some objects

for (var i:int = 1; 1 < 100; i++)

{
bodyDef = new b2BodyDef () ;
bodyDef.type = b2Body.b2 dynamicBody;
bodyDef.position.x = Math.random() * 15 + 5;
bodyDef.position.y = Math.random() * 10;
var rX:Number = Math.random() + 0.5;
var rY:Number = Math.random() + 0.5;

// Box

boxShape = new b2PolygonShape () ;
boxShape.SetAsBox (rX, rY);
fixtureDef.shape = boxShape;
fixtureDef.density = 1.0;
fixtureDef.friction = 0.5;
fixtureDef.restitution = 0.2;

// create the quads

quad = new Quad (100, 100, Math.random()*OxFFFFFF) ;
quad.pivotX = quad.width / 2.0;

quad.pivotY = quad.height / 2.0;

// this is the key line, we pass as a userData the starling.display.Quad
bodyDef .userData = quad;

bodyDef.userData.width = rX * 2 * 30;

bodyDef.userData.height = r¥ * 2 * 30;

body = m world.CreateBody (bodyDef) ;

body.CreateFixture (fixtureDef) ;

// show each quad (acting as a skin of each body)
addChild (bodyDef.userData) ;

Page 95 of 108

Introducing Starling - bytearray.org - revision 1.0

// on each frame
addEventListener(Event.ENTERAFRAME, Update) ;
}

public function Update (e:Event) :void

{
// we make the world run
m world.Step(m timeStep, m velocitylterations, m positionIterations);
m world.ClearForces () ;

// Go through body list and update sprite positions/rotations
for (var bb:b2Body = m world.GetBodyList (); bb; bb = bb.GetNext ()) {

// key line here, we test if we find any starling.display.DisplayObject objects and apply 1
physics to them
if (bb.GetUserData() is DisplayObject)
{
// we cast as a Starling DisplayObject, not the native one !
var sprite:DisplayObject = bb.GetUserData() as DisplayObject;
sprite.x = bb.GetPosition().x * 30;
sprite.y = bb.GetPosition().y * 30;
sprite.rotation = bb.GetAngle() ;
}
}
bodyDef.position.Set (10, 28);

When testing the code above, we get the following result:

FPS: 60 /60
MS: 16
MEM: 16.814

Figure 1.43

Page 96 of 108

Introducing Starling - bytearray.org - revision 1.0

Box2D used with Starling.

And here is the same content running on a next version of AIR for mobile with Stage 3D support:

Figure 1.44

The same applicaton running on a tablet at 60fps.

Of course, we can easily replace those quads with textures, we would end up very quickly with
something way richer graphically. Up to you now to build amazing 2D GPU content!

Profiling Starling

When it comes to profiling performance. The first and absolute must have in all content, is the
frames per second benchmark. Generally, developers will keep this debug information visible at all
times during debugging to monitor performance hickups, pain points and areas of improvements in
content.

We have been using since the beginning of this tutorial the classic stats class from mr.doob,
available here: https://github.com/mrdoob/Hi-ReS-Stats

Page 97 of 108

Introducing Starling - bytearray.org - revision 1.0

We could keep using the Stats class as we did so far. But of course there are always exceptions,
especially on mobile. In a future version of AIR for mobile, Stage 3D will be available. When running
on mobile devices, on platforms like Android, using the display list at the same time as the stage3D
surface, you risk a big performance hit. To give you an idea, on some GPU’s, using the display list,
will reduce your framerate by a factor of 2, so using a compiled framerate of 60 will end up resulting
in 30fps for the display list and 30fps for the Stage3D content. As a result, even for single debugging
purposes, you need to make sure that everything goes to Stage3D.

We just covered previously the concept of bitmap fonts, so we could totally develop a little FPS class
displaying the framerate, which would be running on Stage3D?

The figure below illustrates the glyphs spritesheet we are exporting, note that we select only the
glyphs useful for a FPS counter, to make the spritesheet as lightweight as possible:

e 00 @ futura-fps
. it
HH o)
Save Save As Load Font Preview Export
[Q futu Fill Type (_ Gradient %)

Roughness |0 \3\

3 Futura

v & Glyph Outline
Outline &
width [0.6 B
Roughness |0 \;\
Style (_ Centred %)
Join Style (_ Mitre 3
Mitre Limit |10 ®
Fill Type (_ Solid %)

» A Glyph Shadow

v ﬁ Included Glyphs

1234567890 FPS

(_ASCIl) (NEHE) (Update)

(_Condensed...)

Figure 1.45

The text texture for our FPS counter.

Once the spritesheet and glyphs description files are exported, we use a TextField object with a
BitmapFont to display the FPS:

Page 98 of 108

Introducing Starling - bytearray.org - revision 1.0

package

{
import flash.display.Bitmap;
import flash.utils.getTimer;

import starling.display.Sprite;
import starling.events.Event;
import starling.text.BitmapFont;
import starling.text.TextField;
import starling.textures.Texture;
import starling.utils.Color;

public class FPS extends Sprite
{

private var container:Sprite = new Sprite();
private var bmpFontTF:TextField;

private var frameCount:uint = 0;
private var totalTime:Number = 0;

private static var last:uint = getTimer();
private static var ticks:uint = 0;
private static var text:String = "--.- FPS";

[Embed (source = "../media/fonts/futura-fps.png")]
private static const BitmapChars:Class;

[Embed (source="../media/fonts/futura-fps.fnt", mimeType="application/octet-stream")]
private static const BritannicXML:Class;

public function FPS()

{
addEventListener (Event .ADDED TO STAGE, onAdded) ;

}

private function onAdded (e:Event):void

{
// creates the embedded bitmap (spritesheet file)
var bitmap:Bitmap = new BitmapChars() ;

// creates a texture out of it
var texture:Texture = Texture.fromBitmap (bitmap) ;

// create the XML file describing the glyphes position on the spritesheet
var xml:XML = XML (new BritannicXML());

// register the bitmap font to make it available to TextField
TextField.registerBitmapFont (new BitmapFont (texture, xml));

// create the TextField object
bmpFontTF = new TextField(70, 70, "... FPS", "Futura-Medium", 12);

// border
bmpFontTF.border = true;

// use white to use the texture as it is (no tinting)
bmpFontTF.color = Color.WHITE;

// show it
addChild (bmpFontTF) ;

// on each frame

Page 99 of 108

Introducing Starling - bytearray.org - revision 1.0

stage.addEventListener(Event.ENTERﬁFRAME, onFrame) ;
}

public function onFrame (e:Event) :void
{
ticks++;
var now:uint = getTimer () ;
var delta:uint = now - last;
if (delta >= 1000) {
var fps:Number = ticks / delta * 1000;
text = fps.toFixed(l) + " FPS";
ticks = 0;
last = now;
}
bmpFontTF.text = text;

To use it, very easy, add the following line anywhere inside your Starling world:

// show the fps counter
addChild (new EFPS());

The figure below illustrates our FPS counter at work:

ly.StageScaleMode;

. Ever e NN
+.Mous

ecta

e.St

heig
p ex

Figure 1.46
Our FPS counter rendered through the GPU.

We can now update our physics demo and integrate our FPS counter in it:

Page 100 of 108

Introducing Starling - bytearray.org - revision 1.0

59.9 FPS

Figure 1.47

Our FPS counter integrated in our application.

We now have a way to profile the performance of our content also on mobile. As we mentioned
previously, this solution allows us to completely get rid of the display list, not only for menus, Ul
animations, but also for displaying simple debugging informations like the framerate.

Particles

When it comes to beautiful effects, particles are definitely my favorites. And believe it or not,
particles look amazing but are not really complex. Technically, particles are literally textured quads
moved around using a specific blending mode producing beautiful combinations.

To design our particles for Starling, we will be using a very convenient tool named ParticleDesigner,
developed by the same company (71 squared) behind GlyphDesigner, that we used for our bitmap
fonts. Here is below a snapshot of ParticleDesigner, notice on the right, the emulation mode, where
you can preview the particles you are designing:

Page 101 of 108

Introducing Starling - bytearray.org - revision 1.0

[Users/Imbert/Desktop/burst.pex

iPhone Portrait

(A) (¥ @ \’D \) |_| Loop Emitter @ @ {)
@ @ D & @,
Load Save Save As Randomize Pause Shared Emittef] Orientation iPad Clear Background
Particle Configuration Background Color Emitter Location Particle Texture
Max Particles - red 0 A Source Pos Y Variance
f|—O— [625 ||} - = I |
— = - N () 156 0
} Green (yj=——> 0 [5) v \
Lifespan - = & ~
B|=—O——[4 |[] Bue O—— [0 |[%] e
Y - i () 226
o Lifespan Variance A Emitter Type Variance
. A -4
Start Size " | Gravity s
8 |[=—CO—— 218 ||;| -_———— Particle Color
¥ . X
Start Size Variance ~ Durztiony) -1.00 J§17} e Finish
8 - 238 |4 art inis! ‘
Finish Size - Gravity Configuration Red Green Blue Alpha Red Green Blue Alpha
- - - A
- O @) (
f|=——0— 309 ||} Speed [*] [L L r [[L L [) ‘
= A () () () \J \J K 2 |
Finish Size Variance . 8|0 71 |} v O O | v Y ¥
- 1) = 11
B|CO———[0 ||/ Speed Variance 0.15 001 0.04 091 0.23 0.26 015 0.98
Particle Emit Angle "] - 406 || ; | :
B|-O————— 5 |]
— Gravity x N . - .
Particle Emit Angle Variance g | =0 [1421|[3] Start Variance Finish Variance b
L " T
e
[354 ‘!‘ Gty . Red Green Blue Alpha Red Green Blue Alpha
Rotation Start = B | =——0O— [455.1|;| e I [i v
f|=——C— (134 ||| - [*) O 0O 1R \
. Radial Acceleration { @) |f 1] r Q O
Rotation Start Variance - 8| =O—— [-666.[%)] — - @ :
f|=——O— |0 (v) - - 0.84 0.01 043 036 0.63 0.09 0.04 0.57
- Radial Accl. Variance
Rotation End ~ 8| =—CO—— [-104.][%|
fl—CO—— o | - =)
= r 3 3 Blend Function
Rotation End Variance Tangential Acceleration
- ~ n 3
8l 2336 ") | =——0C— (477 || Source | cLsrc aLpHA | | Normal |
- Tangential Accel.Vari;:;eD A Destination | GL_ONE 4| | Additive |

Figure 1.48
Particle Designer on MacOS.

The main window is just a bunch of parameters to modify. You can easily spend hours playing with
all those options to create the particles you want. There is actually a randomize button to
automatically generate parameters and as a result produce different particles effects.

The figure below illustrates, the save-as dialog box of Particle Designer, exporting the
ParticleEmitter file (.pex) and the texture to render our particles. Those two files will be the files we
will be using to feed our ParticleDesignerPs object.

Page 102 of 108

Introducing Starling - bytearray.org - revision 1.0

Particle Configuration
f

| Max Particles

Lifespan

[8]=0—
@ Lifespan Variance
: @Sm Size
@Sm Size Variance
Finish Size

Finish Size Variance

o 3

/Users/Imbert/Desktop/burst.pex

Save As: I burst

Where: [Desktop

Particle Texture

File Format: [ParticleEmitter (pex)

") Embed texture

Texture File Name: Iburst

Texture Format: [PNG

| Cancel | [Save |

Particle Emit Angle @
Particle Emit Angle Variance

Rteies
A==
: @ Rotation Start - @
@ Rotation Start Variance
=5 —

@

o 1[Z
o8

Rotation End Variance

23363

Rotation End

Page 103 of 108

[8]=—O—— [«s][]

@ Gravity x m @

Cravity y

[8]—O0— ®
Radial Acceleration @

Radial Accl. Variance

-104.[3]

477 |[3]
Tangential Accel. Variance

[8]=O=—=
(8] =—=0—
e Tangential Acceleration
(8] =——=0— [3630](]

Finish

Red Green Blue Alpha

60 © 5 ¥

Start Variance

Finish Variance

Red Green Blue Alpha

Gy oo

Red Green Blue Alpha

ey § 4%

Blend Function

Source [GL_SRC_ALPHA

Destination | GL ONE

A
v
A
v

] [Additive]

.

Figure 1.49
FParticle Designer on MacOS.

Here is below, an example of particles created from ParticleDesigner and running through Starling:

Introducing Starling - bytearray.org - revision 1.0

Figure 1.50

Custom particles running through Starling.

Beautiful no? If you look at it, Starling does not come out of the box with the particles feature. That’s
right, the particles engine is actually an extension of Starling and can be download at the following
address: https://github.com/PrimaryFeather/Starling-Extension-Particle-System

Here is below another beautiful example of particles:

Page 104 of 108

Introducing Starling - bytearray.org - revision 1.0

Figure 1.51

Custom particles running through Starling.

Keep in mind that the particles have to be considered as any other animated object in Starling, as a
result, you need to add your particle object to a Juggler see them animated:

// load the XML config file
var psConfig:XML = XML (new StarConfig());

// create the particle texture
var psTexture:Texture = Texture.fromBitmap (new StarParticle());

// create the particle system out of the texture and XML description
mParticleSystem = new ParticleDesignerPS (psConfig, psTexture);

// positions the particles starting point
mParticleSystem.emitterX = 800;
mParticleSystem.emitterY = 240;

// start the particles
mParticleSystem.start () ;

// show them
addChild (mParticleSystem) ;

// animate them
Starling.juggler.add (mParticleSystem) ;

Page 105 of 108

Introducing Starling - bytearray.org - revision 1.0

Feel free to position the particles the way you want, the ParticleDesignerPS object is actually a
DisplayObject, so you can use all of the expected features. Of course, as always, when you are
done, you need to remove the particles from the juggler, and dispose the particles by calling the
dispose APl onthe ParticleDesignerPs object.

Lee Brimelow (leebrimelow.com) created this example, where particles are used to simulate fire for
a space ship, the figure below illustrates the idea:

Figure 1.52

Farticle effect integrated to our space ship.

We can now add some little particles on the rockets that our space ship fires:

Page 106 of 108

Introducing Starling - bytearray.org - revision 1.0

Figure 1.53
Rockets with fire.

Once our rockets are moving out of the stage, we need to remove them from the scene and from the
juggler:

Starling.juggler.remove (this.particle);
this.removeFromParent (true) ;

We actually missed here a very important detail, we forgot to dispose the particles, not disposing
them would not clean them from the GPU memory, our code above should be changed:

Starling.juggler.remove (this.particle);
this.particle.dispose() ;
this.removeFromParent (true) ;

We are now done with our introduction to Starling, I hope you enjoyed it, now it is up to you to
create amazing content on top of Starling!

Page 107 of 108

Introducing Starling - bytearray.org - revision 1.0

Credits

[would like to thank Chris Georgenes (mudbubble.com) for the gorgeous assets used in this book.

[would like to thank Daniel Sperl (author of Starling), Starling is a beautiful framework, working
with you on this initiative has been extremely exciting.

Page 108 of 108

